检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Taotao Hu Fu Zhang Hua Yu Meng Zhang Yue Yu Wenfeng Zhang Rui Liu Liuwen Tian Zhu Ma
机构地区:[1]Institute of Photovoltaics,Southwest Petroleum University,Chengdu,610500,China
出 处:《Nano Research》2021年第11期3864-3872,共9页纳米研究(英文版)
基 金:This research was supported by the Sichuan Science and Technology Program(No.2021YFH0090);Scientific Research Start-Up Project of Southwest Petroleum University,China(No.X151528);The authors are grateful to the colleagues for their assistance.
摘 要:As a famous hole transporting material, nickle oxide (NiOx) has drawn enormous attention due to its low cost and superior stability. However, the relatively low conductivity and high-density surface trap states of NiOx severely limit device performance in solar cell applications. Interfacial engineering is an efficient approach to achieve remarkable hole-transporting performance by surface passivation. Herein, the efficient NiOx hole transport layer was prepared by surface passivation engineering strategy via facile solution processes with cesium iodide (CsI). It is demonstrated that CsI plays a super-effective dual-function role in inverted solar cell device: On one hand, the presence of CsI hugely passivates the surface trap states at the NiOx/perovskite interface along with obviously improved conductivity by the incorporated Cs^(+);on the other hand, the ions immigration is significantly suppressed by the presence of I ion for high-quality perovskite films, resulting in a stable contact interface. The ameliorative interface leads to largely reduced carrier non-radiative recombination, attributing to boosted carrier extraction efficiency. As a result, decent power conversion efficiency (PCE) of 18.48% with a noticeable fill factor (FF) beyond 80% was achieved. This facile and efficient surface engineering approach with dual-function shows excellent potential for the design of high-performance functional interfacial modification layer to achieve high-performance solar cells.
关 键 词:perovskite solar cells(PSCs) NiO_(x) surface passivation engineering cesium iodide high fill factor
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.41.223