Resistive switching and optical properties of strontium ferrate titanate thin film prepared via chemical solution deposition  被引量:1

在线阅读下载全文

作  者:Jun LI Xingui TANG Qiuxiang LIU Yanping JIANG Zhenxun TANG 

机构地区:[1]School of Physics and Optoelectric Engineering,Guangdong University of Technology,Guangzhou 510006,China

出  处:《Journal of Advanced Ceramics》2021年第5期1001-1010,共10页先进陶瓷(英文)

基  金:supported by the National Natural Science Foundation of China(Grant No.11574057);the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607);the Science and Technology Program of Guangdong Province of China(Grant No.2017A010104022).

摘  要:The polycrystalline strontium ferrate titanate(SrFe_(0.1)Ti_(0.9)O_(3),SFTO)thin films have been successfully prepared by chemical solution method.By analyzing the current-voltage(I-V)characteristics,we discuss the conduction mechanism of SFTO.It is found that the number of oxygen vacancy defects is increased by Fe ion doping,making SFTO be with better resistive switching property.Fe ion doping can also enhance the absorption of strontium titanate to be exposed to visible light,which is associated with the change of energy band.The band gap width(2.84 eV)of SFTO films is figured out,which is less than that of pure strontium titanate.Due to more oxygen vacancy defects caused by Fe ion doping,the band gap width of strontium titanate was reduced slightly.The defect types of SFTO thin films can be determined by electron paramagnetic resonance spectroscopy.In addition,we analyzed the energy band and state density of SFTO by first-principles calculation based on density functional theory,and found that Fe ion doping can reduce the band gap width of strontium titanate with micro-regulation on the band structure.A chemical state of SFTO was analyzed by X-ray photo electron spectroscopy.At the same time,the structure and morphology of SFTO were characterized by X-ray diffraction and scanning electron microscope.This study deepens further understanding of the influence of Fe ion doping on the structure and properties of strontium ferrate titanate,which is expected to be a functional thin film material for memristor devices.

关 键 词:SrTiO_(3) thin films resistive switching oxygen vacancy first principles 

分 类 号:TB383.2[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象