Representation learning on textual network with personalized Page Rank  

在线阅读下载全文

作  者:Teng LI Yong DOU 

机构地区:[1]National Laboratory for Parallel and Distributed Processing,National University of Defense Technology,Changsha 410073,China

出  处:《Science China(Information Sciences)》2021年第11期91-100,共10页中国科学(信息科学)(英文版)

基  金:supported by National Science and Technology Major Projects on Core Electronic Devices,High-End Generic Chips and Basic Software(Grant No.2018ZX01028101);National Natural Science Foundation of China(Grant No.61732018)。

摘  要:Representation learning on textual network or textual network embedding, which leverages rich textual information associated with the network structure to learn low-dimensional embedding of vertices, has been useful in a variety of tasks. However, most approaches learn textual network embedding by using direct neighbors. In this paper, we employ a powerful and spatially localized operation: personalized Page Rank(PPR) to eliminate the restriction of using only the direct connection relationship. Also, we analyze the relationship between PPR and spectral-domain theory, which provides insight into the empirical performance boost. From the experiment, we discovered that the proposed method provides a great improvement in linkprediction tasks, when compared to existing methods, achieving a new state-of-the-art on several real-world benchmark datasets.

关 键 词:representation learning network embedding Page Rank textual network personalized Page Rank 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术] TP181[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象