检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China(Information Sciences)》2021年第11期91-100,共10页中国科学(信息科学)(英文版)
基 金:supported by National Science and Technology Major Projects on Core Electronic Devices,High-End Generic Chips and Basic Software(Grant No.2018ZX01028101);National Natural Science Foundation of China(Grant No.61732018)。
摘 要:Representation learning on textual network or textual network embedding, which leverages rich textual information associated with the network structure to learn low-dimensional embedding of vertices, has been useful in a variety of tasks. However, most approaches learn textual network embedding by using direct neighbors. In this paper, we employ a powerful and spatially localized operation: personalized Page Rank(PPR) to eliminate the restriction of using only the direct connection relationship. Also, we analyze the relationship between PPR and spectral-domain theory, which provides insight into the empirical performance boost. From the experiment, we discovered that the proposed method provides a great improvement in linkprediction tasks, when compared to existing methods, achieving a new state-of-the-art on several real-world benchmark datasets.
关 键 词:representation learning network embedding Page Rank textual network personalized Page Rank
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222