检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周翔 兴旺[1] 杨军[2] 孙来军[2] 王录红 周婉婷 王雪倩 李思琪[1] 汪曼 Zhou Xiang;Xing Wang;Yang Jun;Sun Laijun;Wang Luhong;Zhou Wanting;Wang Xueqian;Li Siqi;Wang Man(Heilongjiang University National Sugar Beet Germplasm Intermediate Bank/Key Laboratory of Sugar Beet Genetics and Breeding,University of Heilongjiang,Harbin 150080;Heilongjiang University,Key Laboratory of University of Electronic Engineering,Heilongjiang,Harbin 150080)
机构地区:[1]黑龙江大学国家甜菜种质中期库/黑龙江省普通高校甜菜遗传育种重点实验室,哈尔滨150080 [2]黑龙江大学/黑龙江省电子工程省高校重点实验室,哈尔滨150080
出 处:《中国农学通报》2021年第29期7-12,共6页Chinese Agricultural Science Bulletin
基 金:科技部财政部国家科技资源共享服务平台项目“国家作物种质资源库甜菜分库运行服务”(NCGRC-2021-017);农作物种质资源保护与利用专项“甜菜种质资源的收集、鉴定、编目、繁种与入库(圃)保存”(1921-026);黑龙江省普通本科高等学校青年创新人才培养计划“甜菜抗旱遗传资源评价及优异基因挖掘”(UNPYSCT-2020014);黑龙江省自然科学基金项目“BvHIPP24基因在能源甜菜重金属镉污染生物修复中的分子机制研究”(LH2019C057);黑龙江省高校基本科研业务费黑龙江大学专项资金项目“能源甜菜BvMPT11基因的Cd污染生物修复应答机制研究”(KJCX201920)。
摘 要:为保证田间甜菜种子的出苗率和生产潜力,需要在种植前对种子进行活力检测,挑选出活力高的甜菜种子进行推广种植。利用高温处理法对甜菜种子进行老化处理,再基于标准正态变换(SNV)、去趋势校正(DET)、Savitzky-Golay平滑处理(SG)、一阶差分(1D)和二阶差分(2D)5种近红外高光谱预处理方法,构建种子活力智能检测模型得出预测的种子发芽率,再利用老化处理后的甜菜种子进行发芽实验得出实际的发芽率。研究发现,甜菜种子经过一阶差分预处理建立的智能检测模型预测性能最好,其预测准确率达到91.92%。将未处理的甜菜种子的实际发芽率与一阶差分预处理法建立的智能模型预测结果进行对比,发现模型的预测准确率为88.2%。近红外高光谱技术是一种快速、无损的作物种子活力测定的新方法。To guarantee the emergence rate and production potential of sugar beet seed in field, it is necessary to test the seed vigor before planting and select the seed with high vigor for planting. The sugar beet seeds were aged by high temperature treatment, and then the intelligent detection model of seed vigor was constructed based on five near-infrared hyperspectral pretreatment methods: standard normal transformation(SNV), detrending correction(DET), Savitzky-Golay smoothing(SG), first-order difference(1 D) and second-order difference(2 D), so as to obtain the predicted seed germination rate. The actual germination rate was obtained by germination test of aged beet seeds. The results show that the intelligent detection model established by the first-order differential pretreatment of sugar beet seeds has the best prediction performance, and its prediction accuracy could reach 91.92%. Comparing the actual germination rate of untreated sugar beet seeds with the prediction results of the intelligent model established by the first-order difference pretreatment method, it is found that the prediction accuracy of the model is 88.2%. It is concluded that the near infrared hyperspectral technology is a new method for rapid and nondestructive determination of crop seed vigor.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.184.166