检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏欣欣 肖洋[1] 胡晓航[1,2] 马亚怀 李彦丽[1,2] Su Xinxin;Xiao Yang;Hu Xiaohang;Ma Yahuai;Li Yanli(Acaademy of Modem Agriculture and Ecology Environment,Heilongjiang University,Harbin 150080;National Sugar Improvement Center,Harbin 150080)
机构地区:[1]黑龙江大学现代农业与生态环境学院,哈尔滨150080 [2]国家糖料改良中心,哈尔滨150080
出 处:《中国农学通报》2021年第30期39-46,共8页Chinese Agricultural Science Bulletin
基 金:黑龙江省省属高等学校基本科研业务费项目“DSSAT-CERES-BEET模型在东北寒地甜菜生产中的适用性评价”(2020-KYYWF-1025);2021年黑龙江大学创新科研项目“基于灰色关联度筛选糖用甜菜区试品种的研究”(YJSCX2021-223HLJU);农业农村部农业技术试验示范与服务支持(品种试验)项目“试验示范与服务支持(品种试验)”(NJZ[2020]-I13)。
摘 要:为了筛选出最适宜黑龙江哈尔滨地区种植的产质量高并抗根腐病的糖用甜菜品种。2020年在黑龙江省哈尔滨市黑龙江大学呼兰校区试验基地,以21个引种的KWS系列及1个BTS2730糖用甜菜品种(KWS1197为对照)为试材,采用主成分分析和灰色关联度分析法对根产量、含糖率、产糖量和根腐病4个指标进行综合评价。两种方法得出的甜菜品种的排序大致一致;第一主成分根产量的贡献率为69.704%,第二主成分含糖率的贡献率为26.283%,累计贡献率为95.987%,因此能够全面地反映甜菜的产质量性状;最适合本地种植的综合评价值高于对照的6个品种为:KWS0023(0.8231)>KWS0015(0.7685)>KWS6661(0.7511)>KWS9921(0.7103)>KWS0860(0.7097)>BTS2730(0.7065)>CK(0.6823);其他品种的综合评价值低于对照。主成分分析法和灰色关联度分析能够较为全面得分析甜菜品种,得出的结果具有可靠性。The aim is to screen out the most suitable sugar beet variety with high production quality and resistance to root rot in Harbin,Heilongjiang Province.In 2020,the test was carried out at the test base of Hulan Campus of Heilongjiang University,with 21 introduced KWS series and 1 BTS2730 sugar beet(KWS1197 as control)as the test materials,4 indexes of root yield,sugar content,sugar yield and root rot were comprehensively evaluated by principal component analysis(PCA)and grey relation analysis(GRA).The sorts of the sugar beet varieties obtained by the two methods were roughly the same.The contribution rate of the first primary component(root yield)was 69.704%.The contribution rate of the second primary component(sugar content)was 26.283%,and the accumulated contribution rate was 95.987%,which could fully reflect the production quality of sugar beet.6 varieties suitable for local planting selected by comprehensive evaluation value were better than the control:KWS0023(0.8231)>KWS0015(0.7685)>KWS6661(0.7511)>KWS9921(0.7103)>KWS0860(0.7097)>BTS2730(0.7065)>CK(0.6823).The comprehensive evaluation value of other varieties was lower than the control.In conclusion,the principal component analysis and gray relational analysis could analyze sugar beet varieties more comprehensively,and the results obtained are reliable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38