Linear Quadratic Mean Field Games:Decentralized O(1/N)-Nash Equilibria  被引量:2

在线阅读下载全文

作  者:HUANG Minyi YANG Xuwei 

机构地区:[1]School of Mathematics and Statistics,Carleton University,Ottawa,ON K1S 5B6,Canada.

出  处:《Journal of Systems Science & Complexity》2021年第5期2003-2035,共33页系统科学与复杂性学报(英文版)

基  金:Natural Sciences and Engineering Research Council(NSERC)of Canada。

摘  要:This paper studies an asymptotic solvability problem for linear quadratic(LQ)mean field games with controlled diffusions and indefinite weights for the state and control in the costs.The authors employ a rescaling approach to derive a low dimensional Riccati ordinary differential equation(ODE)system,which characterizes a necessary and sufficient condition for asymptotic solvability.The rescaling technique is further used for performance estimates,establishing an O(1/N)-Nash equilibrium for the obtained decentralized strategies.

关 键 词:Asymptotic solvability decentralized strategies ε-Nash equilibria linear quadratic mean field games Riccati equations 

分 类 号:O225[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象