一种用于细胞牵引力测量的Parylene-C微板的制备  

A Parylene-C Microplate Fabrication for Determining Cell Traction Forces

在线阅读下载全文

作  者:赵丽君 董晓 李晓娜 黄棣[1,2] 张全有 侯晋川[3] 陈维毅 ZHAO Lijun;DONG Xiao;LI Xiaona;HUANG Di;ZHANG Quanyou;HOU Jinchuan;CHEN Weiyi(Research Center for Nano-biomaterials&Regenerative Medicine,Department of Biomedical Engineering,College of Biomedical Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Institute of Applied Mechanics&Biomedical Engineering,Shanxi Key Laboratory of Materials Strength&Structural Impact,Taiyuan University of Technology,Taiyuan 030024,China;Department of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China;Institute of Microelectronics,Peking University,Beijing 100871,China)

机构地区:[1]太原理工大学生物医学工程学院生物医学工程系,纳米生物材料与再生医学研究中心,太原030024 [2]太原理工大学生物医学工程研究所,材料强度与结构冲击山西省重点实验室,太原030024 [3]太原理工大学数学学院,太原030024 [4]北京大学微电子研究所,北京100871

出  处:《太原理工大学学报》2021年第6期1010-1015,共6页Journal of Taiyuan University of Technology

基  金:国家自然科学基金资助项目(11572213,11632013,11502158);山西省重点研发国际合作项目(201803D421060)。

摘  要:为研究细胞在三维生长状态下的牵张力,采用微机电系统(MEMS)加工技术,以玻璃为微加工基底,采用气相淀积的方法制备聚一氯对二甲苯(Parylene-C)薄膜,通过光刻与刻蚀工艺将Parylene-C薄膜图形化,进而制备了用于细胞牵引力测量的微板。针对Parylene-C刻蚀工艺的刻蚀速率精度低与刻蚀均匀性差,难以实现直接在3μm厚的Parylene图形上精确刻蚀2.9μm深、余厚100 nm的凹槽问题,通过方案的优化设计,改良工艺步骤,将一次积淀、二次刻蚀的工艺流程优化为两次积淀、两次刻蚀,通过第二次直接积淀100 nm厚Parylene C薄膜与刻蚀凹槽外区域形成相应厚度凹槽的方法,精确高效地使Parylene-C薄膜图形化,最终得到了厚度3μm、边长50μm、间距5μm的成对Parylene-C方形微板,方形微板之间为厚度100 nm的Parylene-C连接。微板制作完成后,玻璃基片表面经酰氧乙基磷酸胆碱聚合物涂层进行处理。将成纤维细胞接种在加工成型的Parylene-C微板上。结果表明,Parylene-C微板具有很好的生物相容性,单个成纤维细胞在微板上生长良好。方形微板之间连接具有很好的柔性和可变形性,用微针轻轻触动微板,能很容易实现微板的折叠。该微板可为测量细胞在三维状态下的牵张力提供新的方法。In order to study the CTFs in three-dimensional state,a Parylene-C microplate was fabricated on glass substrate by vapor deposition of Parylene-C film,and subsequent patterning by photolithography and etching using the micro-electromechanical systems(MEMS)technology.For Parylene-C etching process,its low etching rate accuracy and poor etching uniformity make it difficult to precisely etch 2.9μm-deep and 100 nm-thick grooves on 3μm thick Parylene-C patterns.In this paper,through design optimization and process improvement,the process of one deposition step and two etching steps was changed to the process of two deposition steps and two etching steps,and the corresponding thickness groove was formed by the second direct deposition of 100 nm-thick Parylene-C film and etching the area outside the groove.The Parylene-C thin film was patterned accurately and efficiently.Finally,a pair of Parylene-C square patterns with thickness of 3μm,side length of 50μm,and spacing of 5μm were obtained.The Parylene-C link with a thickness of 100 nm was formed between the square patterns.After the fabrication of the microplate,the surface of the glass substrate was treated by acyloxyethyl phosphocholine polymer coating.Fibroblast was seeded on Parylene-C microplate.The results show that Parylene-C microplate had good biocompatibility,and single fibroblast grew well on the microplate.The connection between square patterns had good flexibility and deformability,and the microplate was folded easily by touching the microplate gently with a micro-needle.The microplate can provide a new means for measuring the stretch force of cells in three-dimensional state.

关 键 词:细胞牵张力 Parylene-C微板 MEMS微加工 细胞折叠 

分 类 号:Q819[生物学—生物工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象