检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张亚萍[1] ZHANG Ya-ping(Shaanxi Police Officer Vocational College,Xi’an 710021,China)
机构地区:[1]陕西警官职业学院,西安710021
出 处:《信息技术》2021年第11期105-108,共4页Information Technology
摘 要:提出一种基于超像素分割的行人识别算法。根据图像填充方法进行前景区域填充,恢复图像行人区域完整性,再进行图像的超像素块分割。提取超像素块的像素点特征,采用KNN算法建立超像素块聚类中心直方图作为特种量,得到图像在目标图像的投影区域,寻找最相似超像素块,计算最相似超像素块的最近邻距离作为当前行人与目标行人间距离,采用相似度排名和统计得到行人的识别结果。通过实例验证表明:超像素分割行人识别算法识别度相对较高,且在复杂环境下的识别精确度远高于传统算法。This paper proposes a pedestrian recognition algorithm based on hyper pixel segmentation.According to the image filling method,the foreground area is filled to restore the integrity of the pedestrian area of the image,and then the image is segmented by super pixel block.Pixel features of ultra fast pixel is extracted,and clustering center pixel block histogram is established as a special quantity by using KNN algorithm calculation to get the projection area of the image in the target image,and find the most similar super fast pixel.Calculating the nearest neighbor distance of similar pixel block as the distance between current pedestrians and targeted pedestrians,and using similarity ranking and statistics to obtain the recognition results of pedestrians.The example shows that the hyperpixel segmentation pedestrian recognition algorithm proposed has a relatively high recognition degree and the recognition accuracy is much higher than that of the traditional algorithm in complex environment.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.93.250