基于一维堆叠池化融合卷积自编码器的HRRP目标识别方法  被引量:4

HRRP target recognition method based on one-dimensional stacked pooling fusion convolutional autoencoder

在线阅读下载全文

作  者:张国令 吴崇明 李睿[1] 来杰 向前 ZHANG Guoling;WU Chongming;LI Rui;LAI Jie;XIANG Qian(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China;Xijing College,Xi’an 710123,China)

机构地区:[1]空军工程大学防空反导学院,陕西西安710051 [2]西京学院,陕西西安710123

出  处:《系统工程与电子技术》2021年第12期3533-3541,共9页Systems Engineering and Electronics

基  金:国家自然科学基金(61876189,61273275,61503407,61806219,61703426)资助课题。

摘  要:针对雷达高分辨距离像(high resolution range profile,HRRP)目标识别中特征提取及识别问题,提出了一种基于一维堆叠池化融合卷积自编码器(one-dimensional stacked pooling fusion convolutional autoencoder,1D SPF-CAE)的识别方法。首先构造一维池化融合卷积自编码器(one-dimensional pooling fusion convolutional auto-encoder,1D PF-CAE),在编码阶段,采用最大池化和平均池化同时提取不同的编码特征并进行融合来提取HRRP的结构特征;然后堆叠多个1D PF-CAE形成1D SPF-CAE;最后使用标签数据对网络进行微调,实现HRRP目标识别。并使用AdaBound算法优化网络训练来提高识别性能。基于弹道中段目标仿真数据的实验结果表明,该方法具有较强的特征提取能力,对于HRRP目标识别准确率高、鲁棒性强。Aiming at the problem of feature extraction and recognition in high resolution range profile(HRRP)target recognition,a recognition method based on one-dimensional stacked pooling fusion convolutional autoencoder(1D SPF-CAE)is proposed in this paper.Firstly,a one-dimensional pooling fusion convolutional autoencoder(1D PF-CAE)is constructed.In the encoding stage,the maximum pooling and average pooling are used to extract different encoding features and fuse them to extract the structural features of HRRP.Then,multiple 1D PF-CAEs are stacked to form 1D SPF-CAE.Finally,the network is fine-tuned using label data to realize HRRP target recognition.And the AdaBound algorithm is used to optimize network training for improving the recognition performance.The experimental results based on the simulated data of the target in the middle part of the trajectory show that the method has strong feature extraction capability,and has high accuracy and robustness for HRRP target recognition.

关 键 词:雷达自动目标识别 高分辨距离像 卷积自编码器 特征提取 池化融合 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象