检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐光勇[1] 杨静[2,3] 赵拥军 刘治涛[1] XU Gguangyong;YANG Jing;ZHAO Yongjun;LIU Zhitao(Sichuan Jiuzhou Electric Group Co Ltd,Mianyang 621000,Sichuan,China;Information Engineering University,Zhengzhou 450001,China;Zhengzhou Union Logistics Safeguard center,Zhengzhou 450001,China)
机构地区:[1]四川九洲电器集团有限责任公司,四川绵阳621000 [2]战略支援部队信息工程大学,郑州450001 [3]郑州联勤保障中心,郑州450001
出 处:《电子信息对抗技术》2021年第6期43-49,共7页Electronic Information Warfare Technology
基 金:国家青年自然科学基金(61703433);国家面上自然科学基金(62071490)。
摘 要:两步加权最小二乘是求解基于时差的多辐射源定位问题的经典线性方法,但是其存在额外的开方运算和矩阵求逆时存在的缺秩等问题。针对传感器位置存在误差时的多辐射源定位问题,提出一种改进的两步加权最小二乘代数解算法。所提算法可避免额外的开方运算和矩阵求逆时存在的缺秩。仿真结果表明,所提方法在传感器位置存在误差时,对多个辐射源目标的定位均方误差可以达到克拉美罗界,并且与传统两步加权最小二乘方法相比具有更低的均方误差和更高的稳健性。The two-step weighted least squares(2WLS)algorithm is a well-known linear method in the time difference of arrival(TDOA)positioning of multiple disjoint sources.However,it suffers additional square operation and rank deficiency when solving the inverse matrix.Addressing locating multiple disjoint sources in the presence of sensor position errors,an improved 2WLS algebraic solution is proposed.Compared with the conventional 2WLS algorithm,a different linearization technique is employed in the second WLS step,by which the additional square operation and the problem of rank deficiency when solving the inverse matrix are avoided.Simulation results demonstrate that the Cramér-Rao lower bound performance for multiple disjoint sources could be achieved analytically in the presence of sensor position errors,and the solution has lower localization errors and higher robustness than the conventional 2WLS step.
关 键 词:多辐射源 传感器位置误差 时差 两步加权最小二乘 缺秩 开方
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28