检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易琳 王欣[1] Yi Lin;Wang Xin(School of Computer Science,Civil Aviation Flight University of China,Guanghan 618307)
机构地区:[1]中国民用航空飞行学院计算机学院,广汉618307
出 处:《现代计算机》2021年第29期41-45,共5页Modern Computer
摘 要:传统机器学习模型在网络入侵检测方面存在识别率低等问题,为了进一步提升检测率,主要应用Boosting集成学习算法进行相关的检测和研究,同时通过随机森林法来针对关键特征予以提取,构建多类分类器模型,同时借助KDD99数据来针对试验予以验证。实验结果表明Boosting集成学习算法能够较好的识别攻击类型数据。改进的GDBT,Xgboost相比随机森林效果较好,整体的准确率和召回率相比较优,表现出较高的预测精度。Research on intrusion detection related issues,today network attack model upgrade fast,more secretive encryption of traffic,in the past,traditional machine learning model for intrusion detection in low recognition rate problems,in order to further detec⁃tion rate for ascension,this article mainly used Boosting integration learning algorithm to expand testing analysis,At the same time,the random forest method was used to extract the key features,and the multi-class classifier model was constructed.Meanwhile,the KDD99 data was used to verify the experiment.The experimental results show that Boosting ensemble learning algorithm can identify attack type data well.Improved GDBT,XGBoost is better than Random Forest.Compared with the overall accuracy and recall rate,it shows a higher prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145