基于希尔伯特变换的双馈式风电机组中发电机的碳刷-滑环早期故障诊断研究  被引量:1

RESEARCH ON EARLY FAULT DIAGNOSIS OF CARBON BRUSH-SLIDE RING OF GENERATOR IN DOUBLY-FED WIND TURBINE BASED ON HILBERT TRANSFORM

在线阅读下载全文

作  者:余清清 钱赫 许国东 黄千松 王潇 任静 Yu Qingqing;Qian He;Xu Guodong;Huang Qiansong;Wang Xiao;Ren Jing(Zhejiang Windey Co.,Ltd.,Key Laboratory of Wind Power Technology of Zhejiang Province,Hangzhou 310012,China)

机构地区:[1]浙江运达风电股份有限公司,浙江省风力发电技术重点实验室,杭州310012

出  处:《太阳能》2021年第11期83-88,共6页Solar Energy

基  金:浙江省重点研发计划项目(2019C01050)。

摘  要:本文针对双馈式风电机组中发电机的碳刷-滑环在早期出现打火故障时面临的诊断困难问题,利用FIR带通滤波器对发电机的转子电流信号的时域波形进行滤波,并对滤波后的信号进行希尔伯特变换,通过包络谱分析,可以得到明显的碳刷-滑环打火特征信号;然后在发电机对拖试验平台上,对2 MW双馈式风电机组的发电机进行了碳刷-滑环打火试验,分析了发电机的转子电流信号与碳刷-滑环打火现象之间的相关性。通过将仿真分析结果与试验结果进行对比发现:该方法能很好地提取电流信号中的特征信号,并可应用于双馈式风电机组中发电机的碳刷-滑环的早期故障诊断。Aiming at the diagnosis difficulties problem faced by the carbon brush-slide ring of geberator in doubly-fed wind turbine when the sparking failure occurs in the early stage,this paper uses FIR bandpass filters to filter the time-domain waveforms of the rotor current signals of generator,and then make Hilbert transform on the filtered signal.Through analyzing the envelope spectrum,an obvious carbon brush-slide ring sparking characteristic signal can be obtained.On the generator mechanical back to back test platform,a carbon brushslide ring sparking test is made on generator of 2 MW doubly-fed wind turbine,and the correlation between the generator rotor current signals and the carbon brush-slide ring sparking phenomenon are analyzed.By comparing the simulation analysis results with the test results,it is found that the method can well extract the characteristic signals in the current signal,and can be applied to the early fault diagnosis of the carbon brush-slide ring of generator in doubly-fed wind trubine.

关 键 词:双馈式风电机组 发电机 碳刷-滑环 希尔伯特变换 打火故障 早期故障诊断 MATLAB软件 FIR带通滤波器 

分 类 号:TM614[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象