检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏国强 周从华[1] 张婷[2] WEI Guoqiang;ZHOU Conghua;ZHANG Ting(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013;Wuxi Maternal and Child Health Hospital,Wuxi 214002)
机构地区:[1]江苏大学计算机科学与通信工程学院,镇江212013 [2]无锡市妇幼保健院,无锡214002
出 处:《计算机与数字工程》2021年第11期2299-2304,2406,共7页Computer & Digital Engineering
摘 要:针对常用方法无法准确度量多元时间序列相似程度的问题,提出一种基于多维分段和动态权重动态时间弯曲距离的多元时间序列相似性度量方法。首先对多元时间序列进行多维分段拟合,选取拟合段的斜率、均值和时间跨度作为每一段的特征,在对多元时间序列降维的同时也保留了变量之间的相关性;然后提出一种动态权重动态时间弯曲距离度量方法计算多元时间序列特征矩阵之间的距离,避免了直接使用动态时间弯曲距离造成的畸形匹配问题。最终实验结果也验证了该方法在多种类型的数据集上都能取得较高的度量精度,表明了该方法的有效性。Common methods can not measure the similarity of multivariate time series accurately.In this paper,a similarity measurement method for multivariate time series based on multi-dimensional segmentation and dynamic weighted dynamic time warping distance is proposed.Firstly,multivariate time series are fitted with multi-dimensional piecewise method and the gradient,mean value and time span of each segment are chosen as the feature pattern.While the dimension of multi-dimensional time series is reduced,the correlation between variables is preserved.Then,a dynamic weighted dynamic time warping distance measurement method is proposed to calculate the distance between the feature matrix,which avoids the incorrect matching by the direct use of dy⁃namic time warping.The final experimental results also verify that the method can achieve high measurement accuracy on various types of data sets,and show the effectiveness of the method.
关 键 词:多元时间序列 相似性度量 多维分段 动态时间弯曲 动态权重
分 类 号:O211.5[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222