基于深度学习的区块链数据分片峰值聚类算法  被引量:1

Block chain data sliced peak clustering algorithm based on deep learning

在线阅读下载全文

作  者:张皓 ZHANG Hao(Huali College,Guangdong University of Technology,Guangzhou 511325,China)

机构地区:[1]广东工业大学华立学院,广州511325

出  处:《智能计算机与应用》2021年第7期20-23,31,共5页Intelligent Computer and Applications

基  金:2020年度广东省普通高校特色人才创新项目(自然科学类)项目(2019KTSCX223)。

摘  要:为了提高物联网区块链数据挖掘能力,需要进行数据优化聚类处理,提出基于深度学习的区块链数据分片峰值聚类算法。采用异构有向图分析方法进行物联网区块链数据存储结构设计,结合特征空间重组技术进行物联网区块链数据结构重组,提取物联网区块链数据的关联信息特征量,采用语义相关性融合的方法进行区块链数据特征提取和自适应调度,对提取的物联网区块链数据特征量进行模糊聚类处理,采用模糊C均值聚类方法进行物联网区块链数据的网格分片峰值聚类和属性分类识别,采用深度学习方法进行数据聚类过程中的分片峰值融合和聚类分析,实现区块链数据分片峰值聚类。仿真结果表明,采用该方法进行区块链数据分片峰值聚类的收敛性较好,误分率较低,自适应学习能力较强。In order to improve the ability of blockchain data mining in the Internet of Things,it is necessary to carry out data optimization clustering processing and propose a block chain data slice peak clustering algorithm based on deep learning.Using the heterogeneous directed graph analysis method to design the data storage structure of the Internet of Things block chain,combining the feature space reorganization technology to reorganize the data structure of the Internet of Things block chain,extracting the related information characteristic quantity of the Internet of Things block chain data,using the semantic correlation fusion method to extract the block chain data feature and adaptive scheduling,performing fuzzy clustering processing of the extracted block chain data feature quantity,using the fuzzy C-means clustering method to identify the grid segmented peak clustering and attribute classification of the block chain data of the Internet of Things,and using deep learning methods to perform the segmented peak fusion and clustering analysis in the process of data clustering,the segmented peak clustering of the block chain data is realized.The simulation results show that the convergence of block chain data segmentation peak clustering with this method is good,the error rate is low,and the adaptive learning ability is strong.

关 键 词:深度学习 区块链 数据 挖掘 聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象