面向司法大数据的文本主题OLAP系统  被引量:1

Big data oriented text topic OLAP system

在线阅读下载全文

作  者:王玲 刘晓清 何震瀛[2] 奚军庆 项焱[4] WANG Ling;LIU Xiaoqing;HE Zhenying;XI Junqing;XIANG Yan(School of Software,Fudan University,Shanghai 200438,China;School of Computer Science and Technology,Fudan University,Shanghai 200438,China;Ministry of Justice Information Center,Beijing 100020,China;School of Low,Wuhan University,Wuhan,Hubei Province 430000China)

机构地区:[1]复旦大学软件学院,上海200438 [2]复旦大学计算机科学技术学院,上海200438 [3]司法部信息中心,北京100020 [4]武汉大学法学院,武汉430000

出  处:《智能计算机与应用》2021年第9期28-34,41,共8页Intelligent Computer and Applications

基  金:国家重点研发计划(2018YFC0830900)。

摘  要:随着大数据技术的发展,加强司法大数据应用成为推进司法现代化建设的重要手段,如何处理司法大数据中的非结构化数据亟待解决。为此,本文提出了面向司法大数据的文本主题OLAP系统。在离线数据处理模块中,设计了Span数据模型,并定义了多种针对该模型的操作符;设计了基于规则的文本行政区划归类方法,并构建了主题立方体。在线上查询模块中,实现了基于倒排索引的关键词搜索方法和最大独特主题范围查询,提供了上卷、下钻、切片等功能。通过在大规模的真实数据集上对系统进行测试,实验结果证明了该系统的合理性和实用性。With the development of big data technology,strengthening the application of judicial big data has become an important means to promote judicial modernization.How to deal with unstructured data in judicial big data needs to be solved urgently.To this end,a text topic OLAP system oriented to judicial big data is proposed,which includes offline data processing and online query parts.In the offline data processing module,a Span data model is designed and a variety of operators for this model are defined.In addition,a rule-based text administrative division classification method is designed,and a topic cube is constructed.In the online query module,the keyword search method based on the inverted index and the largest unique subject range query are realized,and functions such as scrolling,drilling,and slicing are provided.The system is tested on a real large-scale data set,and the experimental results proves the rationality and practicability of the system.

关 键 词:大数据处理 OLAP 行政区划归类 独特主题 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象