检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹程 张目 Cao Cheng;Zhang Mu(School of Big Data Application and Economics;Guizhou Institution for Technology Innovation&Entrepreneurship Investment,Guizhou University of Finance and Economics,Guiyang 550025,China)
机构地区:[1]贵州财经大学大数据应用与经济学院 [2]贵州财经大学贵州科技创新创业投资研究院,贵州贵阳550025
出 处:《科技管理研究》2021年第21期38-46,共9页Science and Technology Management Research
基 金:国家自然科学基金地区项目“基于文本信息的科技型中小企业信用风险识别机理研究”(71861003);贵州财经大学2020年度在校学生科研项目“贵州量子科技发展潜力评价及金融支持研究”(2020ZXSY14)。
摘 要:从金融资源被投入主体(企业)的角度出发,运用熵权-线性加权和法、DEA-BCC模型和DEAMalmquist指数模型分别测度2015-2019年中国省际新一代高新技术产业金融支持水平和效率,并进行静态分析和动态比较。结果表明,总体来看,新一代高新技术产业金融支持水平和效率均较低,银行贷款、股票融资和纯技术效率对水平和效率的整体贡献相对较小;债券融资是低水平省份的首要制约因素,其次是风险投资;纯技术效率是低效率省份的首要制约因素。新一代高新技术产业金融支持水平和效率均保持较好增长态势,银行贷款、政府补助和规模效率变动分别是水平增长和效率增长的主要动力;股票融资是水平下降省份的首要抑制因素,其次是债券融资和风险投资;技术进步变动是效率下降省份的首要抑制因素。From the perspective of subjects(enterprises) which financial resources are invested in,this paper investigates the financial support level and efficiency of China’s inter-provincial new generation high-tech industry from 2015 to 2019 with the entropy-linear weighted sum method,DEA-BCC model,and Malmquist index model.The financial support level and efficiency are compared from the static and dynamic angles.It is concluded that:the financial support level and efficiency of China’s new generation high-tech industry are not high enough relatively;the overall contribution of bank loan,stock financing and pure technical efficiency to level and efficiency are relatively small;bond financing is the primary constraint of low-level provinces,followed by venture capital,while pure technical efficiency is the primary constraint of low-efficiency provinces.However,the financial support level and efficiency of China’s new generation high-tech industry are on an upward trend.Bank loan and government subsidy are the main motivation of level growth,while scale efficiency change is that of efficiency growth;for level-declining provinces,stock financing is the primary inhibiting factor,followed by bond financing and venture capital,while technological progress change is the primary inhibiting factor for efficiency-declining ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.110.165