检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨国田[1] 何雨晨 李鑫 李新利[1] YANG Guotian;HE Yuchen;LI Xin;LI Xinli(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学控制与计算机工程学院,北京102206
出 处:《热力发电》2021年第12期6-12,共7页Thermal Power Generation
基 金:中央高校基本科研业务费专项资金资助(JB2017169)。
摘 要:锅炉燃烧系统是一个典型变量多、耦合性强、大滞后、多输入/多输出的动态系统,构建符合实际工况的燃烧系统模型十分困难。本文提出一种新的基于双向门限循环单元(Bi-GRU)的锅炉燃烧系统建模方法,建立了变负荷(低、中、高负荷)工况下燃烧系统训练模型。同时,采用梯度提升决策树(GBDT)降低输入特征矩阵维数。GBDT模型可以在不同的负荷与输出下评估输入特征的权重,能在保留特征原有物理意义的基础上识别出权重比例最大的特征。基于GBDT的特征选择模型既能降低原始输入维数,又可以为后续燃烧控制策略提供理论指导。实际运行数据计算结果表明,Bi-GRU和GBDT建立的新的燃烧系统模型能够准确地反映不同负荷下主蒸汽流量、主蒸汽压力和NO_(x)排放量的动态变化。与传统的循环神经网络(RNN)模型相比,本文新模型的精度和性能都有显著提高,并且结构简单,计算量小。The combustion system of power plant boilers is a typical multi-variable dynamic system,which is strongly coupled,large-lag,and with multiple input/output signals.Therefore,it is difficult to construct a model of the combustion system that is close to the reality.A new modeling method for the boiler combustion sytem is proposed based on bidirectional gated recurrent unit(Bi-GRU),and the training models for the combsution system under varying load conditions(low load,medium load and high load)are established.Meanwhile,the gradient boosting decision tree(GBDT)is adopted to reduce the input features matrix dimensions.The GBDT model can evaluate the weight of the inputs feature at different outputs and loads,and identify the most informative features on the basis of preserving the original physical meaning.The feature selection model by GBDT can not only reduce the original input dimension but also contribute to theoretical guidance for the subsequent combustion control strategy.The actual operation data calculation results show that,the new combustion system model established by Bi-GRU and GBDT can accurately reflect the output(main steam flow,main steam pressure and NO_(x) emission)dynamic change with different loads.Compared with the conventional recirculating neural network(RNN)model,the new model proposed above has significant higher accuracy and performance,and simpler structure and less computation time.
关 键 词:锅炉燃烧系统 双向门限循环单元 梯度提升决策树 输出特征
分 类 号:TM621.2[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117