Topic-Feature Lattices Construction and Visualization for Dynamic Topic Number  被引量:1

在线阅读下载全文

作  者:Kai WANG Fuzhi WANG 

机构地区:[1]Bengbu Medical College,Bengbu 233000,China

出  处:《Journal of Systems Science and Information》2021年第5期558-574,共17页系统科学与信息学报(英文)

基  金:the Key Projects of Social Sciences of Anhui Provincial Department of Education(SK2018A1064,SK2018A1072);the Natural Scientific Project of Anhui Provincial Department of Education(KJ2019A0371);Innovation Team of Health Information Management and Application Research(BYKC201913),BBMC。

摘  要:The topic recognition for dynamic topic number can realize the dynamic update of super parameters,and obtain the probability distribution of dynamic topics in time dimension,which helps to clear the understanding and tracking of convection text data.However,the current topic recognition model tends to be based on a fixed number of topics K and lacks multi-granularity analysis of subject knowledge.Therefore,it is impossible to deeply perceive the dynamic change of the topic in the time series.By introducing a novel approach on the basis of Infinite Latent Dirichlet allocation model,a topic feature lattice under the dynamic topic number is constructed.In the model,documents,topics and vocabularies are jointly modeled to generate two probability distribution matrices:Documentstopics and topic-feature words.Afterwards,the association intensity is computed between the topic and its feature vocabulary to establish the topic formal context matrix.Finally,the topic feature is induced according to the formal concept analysis(FCA)theory.The topic feature lattice under dynamic topic number(TFL DTN)model is validated on the real dataset by comparing with the mainstream methods.Experiments show that this model is more in line with actual needs,and achieves better results in semi-automatic modeling of topic visualization analysis.

关 键 词:dynamic topic number infinite latent Dirichlet allocation(ILDA) formal concept analysis topic feature lattice topic feature lattice under dynamic topic number(TFL_DTN)model 

分 类 号:G254[文化科学—图书馆学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象