基于手绘草图的快速植物建模  被引量:1

Rapid Plant Modeling Based on S ketches

在线阅读下载全文

作  者:何振邦 程章林[1] HE Zhenbang;CHENG Zhanglin(Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院深圳先进技术研究院,深圳518055 [2]中国科学院大学,北京100049

出  处:《集成技术》2021年第6期58-73,共16页Journal of Integration Technology

基  金:国家自然科学基金项目(61972388);深圳市基础研究项目(JCYJ20180507182222355);广东领军人才项目(00201509)。

摘  要:传统的交互式植物建模虽然能构建较为精准的目标模型,但其过程极为费时,而基于L-system的过程式建模虽然能快速自动生成复杂模型,但由于其较高的学习门槛以及对植物形态的控制性欠佳,使得普通用户难以操作。二维草图作为一种直观、高效的交互媒介,对植物形态具有良好的描述力。基于此,该文提出一种基于手绘草图的植物建模方法:首先,对创作者绘制的草图进行预处理和分析,推测创作者的创作意图;然后,结合植物学知识,提出相应的花朵、枝干和叶片的深度信息恢复方法来恢复二维草图中缺失的深度信息;最后,根据深度信息和一定的植物学先验知识重建出具有真实感的目标模型。该方法支持对花卉、草本、树木等具有枝叶结构的植物进行建模,同时具有较大的创作自由度和较快的建模速度。Traditional interactive modeling of plants can get accurate plants models,but this process is extremely time-consuming and laborious.Automatic modeling methods like L-system-based methods can generate complex models quickly,but it is difficult for non-expert users because of its high learning cost and poor control over plant morphology.As an intuitive and efficient interaction means,the 2D sketch has a strong descriptive ability for plant morphology.In order to improve the plant modeling efficiency,a plant modeling method based on the 2D sketch is investigated.Firstly,the sketch drawn by the creator is preprocessed and analyzed to infer the creator’s intention.Then,based on the botany knowledge,the depth recovery algorithm of flowers,branches and leaves is proposed to recover the missing depth information in the 2D sketch.Finally,the target plant model is constructed according to the depth and plant characteristics.The proposed method is efficient and can support plant models with branch and leaf structures,such as flowers,potted plants,and trees.

关 键 词:植物建模 基于草图的建模 三维重建 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象