检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王颖[1] Wang Ying(National Science Library,Chinese Academy of Sciences,Beijing 100190,China)
出 处:《现代情报》2021年第12期164-177,共14页Journal of Modern Information
基 金:国家社会科学青年基金项目“基于关联数据的学术资源深度挖掘方法研究”(项目编号:15CTQ006)。
摘 要:[目的/意义]全面系统地对学术资源挖掘方法进行梳理,对比和分析不同挖掘方法,探讨应用和未来发展方向。[方法/过程]通过国内外文献数据库获取学术资源挖掘相关文献,对研究主题进行分析,从研究对象、挖掘维度、采用技术等角度对学术资源挖掘方法进行分类对比和分析,将现有挖掘方法分为纵向挖掘和横向挖掘两个维度,并进一步,探讨学术资源挖掘在学术检索、学术推荐、科技前沿识别与预测等方面的应用情况。[结果/结论]目前学术资源挖掘的主要研究对象仍为学术论文和专利,有待于加强不同类型资源的综合挖掘和跨领域挖掘,并且知识图谱、深度学习、大数据等技术在学术资源挖掘的应用研究还需要进一步突破。[Purpose/Significance]To make a comprehensive and systematic review of academic resource mining methods,the paper compares and analyzes different mining methods,and discusses their application and future development direction.[Method/Process]Based on the search results of literature database on academic resources mining,research topics of these articles was analysed,mining methods from perspectives of research object,mining dimension and mining technology were compared,existing mining methods were divided into two dimensions:vertical mining and horizontal mining,and then the application in academic search and recommendation,research and technology frontier identification and prediction was discussed.[Result/Conclusion]At present,the main research objects of academic resource mining are still academic papers and patents,which need to strengthen the comprehensive mining and cross-domain mining of academic resources,while the application research of knowledge graph,deep learning,big data and other technologies in academic resource mining needs to be further broken through.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.87.133