Connes distance of 2D harmonic oscillators in quantum phase space  

在线阅读下载全文

作  者:Bing-Sheng Lin Tai-Hua Heng 林冰生;衡太骅(School of Mathematics,South China University of Technology,Guangzhou 510641,China;Laboratory of Quantum Science and Engineering,South China University of Technology,Guangzhou 510641,China;School of Physics and Material Science,Anhui University,Hefei 230601,China)

机构地区:[1]School of Mathematics,South China University of Technology,Guangzhou 510641,China [2]Laboratory of Quantum Science and Engineering,South China University of Technology,Guangzhou 510641,China [3]School of Physics and Material Science,Anhui University,Hefei 230601,China

出  处:《Chinese Physics B》2021年第11期170-179,共10页中国物理B(英文版)

基  金:Project supported by the Key Research and Development Project of Guangdong Province,China(Grant No.2020B0303300001);the National Natural Science Foundation of China(Grant No.11911530750);the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2019A1515011703);the Fundamental Research Funds for the Central Universities,China(Grant No.2019MS109);the Natural Science Foundation of Anhui Province,China(Grant No.1908085MA16).

摘  要:We study the Connes distance of quantum states of two-dimensional(2D)harmonic oscillators in phase space.Using the Hilbert–Schmidt operatorial formulation,we construct a boson Fock space and a quantum Hilbert space,and obtain the Dirac operator and a spectral triple corresponding to a four-dimensional(4D)quantum phase space.Based on the ball condition,we obtain some constraint relations about the optimal elements.We construct the corresponding optimal elements and then derive the Connes distance between two arbitrary Fock states of 2D quantum harmonic oscillators.We prove that these two-dimensional distances satisfy the Pythagoras theorem.These results are significant for the study of geometric structures of noncommutative spaces,and it can also help us to study the physical properties of quantum systems in some kinds of noncommutative spaces.

关 键 词:Connes distance noncommutative geometry harmonic oscillator 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象