A Novel Probabilistic Hybrid Model to Detect Anomaly in Smart Homes  被引量:1

在线阅读下载全文

作  者:Sasan Saqaeeyan Hamid Haj Seyyed Javadi Hossein Amirkhani 

机构地区:[1]Department of Computer Engineering,Borujerd Branch,Islamic Azad University,Borujerd,Iran [2]Department of Mathematics and Computer Science,Shahed University,Tehran,Iran [3]Computer Engineering and Information Technology Department,University of Qom,Qom,Iran

出  处:《Computer Modeling in Engineering & Sciences》2019年第12期815-834,共20页工程与科学中的计算机建模(英文)

摘  要:Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone.Compared to the previous studies done on this topic,less attention has been given to hybrid methods.This paper presents a two-steps hybrid probabilistic anomaly detection model in the smart home.First,it employs various algorithms with different characteristics to detect anomalies from sensory data.Then,it aggregates their results using a Bayesian network.In this Bayesian network,abnormal events are detected through calculating the probability of abnormality given anomaly detection results of base methods.Experimental evaluation of a real dataset indicates the effectiveness of the proposed method by reducing false positives and increasing true positives.

关 键 词:Smart homes sensory data anomaly detection Bayesian networks ensemble method 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象