检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆雅诺 陈炳才 LU Ya-nuo;CHEN Bing-cai(College of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China;School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China)
机构地区:[1]新疆师范大学计算机科学技术学院,新疆乌鲁木齐830054 [2]大连理工大学计算机科学与技术学院,辽宁大连116024
出 处:《计算机与现代化》2021年第11期61-66,76,共7页Computer and Modernization
基 金:国家自然科学基金资助项目(61961040,61771087);新疆维吾尔自治区“天山青年计划”(2018Q024);自治区区域协同创新专项(科技援疆计划)(2020E0247,2019E0214)。
摘 要:森林火灾、野火是一个重大的自然灾害问题,每年全球各地植被都会受到严重的破坏。为了提高森林火灾的防控精度,针对传统方法具有火灾背景复杂、准确率低、效率低等问题,本文提出一种基于CenterNet的森林火灾检测算法。CenterNet作为一种无锚的方法,将目标定义为一个点,通过关键点估计定位目标的中心点,可以有效避免小目标的漏检。同时基于高效深层特征提取网络ResNet50,融合ECA模块以抑制无用信息,增加模型的特征提取能力。在公开森林火灾数据集上进行实验表明,与其他算法相比,本文提出的森林火灾检测算法误检率低,识别精度达到92.39%,F1值为0.86,Recall值为79.75%,FPS为43.31。本文提出的方法检测精度高,可满足实时检测森林火灾和实施精准施救的要求。Forest fire and wildfire are major natural disaster problems,and vegetation is severely damaged all over the world every year.In order to improve the accuracy of forest fire prevention and control,aiming at the problems of complex fire background,low accuracy and low efficiency of traditional methods,this paper proposes a forest fire detection algorithm based on CenterNet.As an anchorless method,CenterNet defines a target as a point and locates the centroid of the target by key point estimation,which can effectively avoid the missed detection of small targets.At the same time,based on an efficient deep feature extraction network,ResNet50,it incorporates an ECA module to suppress useless information and increase the feature extraction capability of the model.Experiments conducted on public forest fire datasets show that compared with other arithmetic methods,the forest fire detection algorithm proposed in this paper has a low false detection rate and a recognition accuracy of 92.39%with a F1 value of 0.86,a Recall value of 79.75%,and a FPS of 43.31.The proposed method has a high detection accuracy and achieves real-time detection of forest fires and implementation of accurate rescue.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222