检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Science,Xi’an Polytechnic University,Xi’an 710048,China [2]School of Mathematics,Northwest University,Xi’an 710127,China [3]School of Cyber Engineering,Xidian University,Xi’an 710071,China
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2021年第4期521-536,共16页高校应用数学学报(英文版)(B辑)
基 金:Supported by the National Natural Science Foundation of China(11971384);by the grant of Natural Science Basic Research Program of Shaanxi(Program No.2021JM-137);the Fundamental Research Funds for the Central Universities under grant QTZX2106,China 111 Project(B16037)and OPPO Research Fund.
摘 要:We introduced the fuzzy axioms of choice,fuzzy Zorn’s lemma and fuzzy well-ordering principle,which are the fuzzy versions of the axioms of choice,Zorn’s lemma and well-ordering principle,and discussed the relations among them.As an application of fuzzy Zorn’s lemma,we got the following results:(1)Every proper fuzzy ideal of a ring was contained in a maximal fuzzy ideal.(2)Every nonzero ring contained a fuzzy maximal ideal.(3)Introduced the notion of fuzzy nilpotent elements in a ring R,and proved that the intersection of all fuzzy prime ideals in a commutative ring R is the union of all fuzzy nilpotent elements in R.(4)Proposed the fuzzy version of Tychonoff Theorem and by use of fuzzy Zorn’s lemma,we proved the fuzzy Tychonoff Theorem.
关 键 词:fuzzy axioms of choice fuzzy Zorn’s lemma fuzzy well-ordering principle fuzzy ideal of a ring fuzzy Tychonoff Theorem
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33