检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐振鹏 吴俊传 张婷婷 杜晓旭 陈凯杰 TANG Zhenpeng;WU Junchuan;ZHANG Tingting;DU Xiaoxu;CHEN Kaijie(College of Economics and Management,Fuzhou University,Fuzhou 350108,China)
出 处:《系统工程理论与实践》2021年第11期2837-2849,共13页Systems Engineering-Theory & Practice
基 金:国家自然科学基金面上项目(71573042,71973028)。
摘 要:本文基于二次分解和集成学习的思想,构建VMD-EEMD-DE-ELM-DE-ELM组合模型,选取CBOT交易所上市的大豆,小麦及水稻期货作为国际粮食期货的代表,预测其未来收益率走势.鉴于目前已有研究均直接忽略VMD分解后残差项所含纳的重要信息,本文引入二次分解思想首次对其残差项进行EEMD二次分解、集成预测,改善其预测精度,进而提高模型整体预测精度.同时,针对现有组合模型预测方法采用等权重重构分量预测结果的缺陷,本文借鉴集成学习的思想,引入DE-ELM元学习器优化预测重构权重,优化模型全局预测表现.实证结果发现:本文提出的混合模型相较参照组模型具有显著的预测优势.Based on the idea of secondary decomposition and ensemble learning,we build the VMD-EEMD-DE-ELM-DE-ELM model,select soybeans,wheat and rice futures listed on the CBOT exchange as representatives of international grain futures,and predict its future price trend.In view of the existing research that directly ignore the residual items after VMD decomposition,we introduce the idea of secondary decomposition to perform the EEMD decomposition and ensemble prediction of its residual items for the first time.This method can capture the rich information contained in the residual items,thereby helping to improve the model’s prediction effect on the original sequence.At the same time,because of the shortcomings of the existing model which use equal weights to reconstruct the prediction results of components,we draw on the idea of ensemble learning and introduces the DE-ELM meta-learner to optimize the reconstruction weights to obtain the best overall prediction results of the model.The empirical results show that the model proposed by us has a significant predictive advantage over the existing models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.42.14