检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李玉祺 王广民[1] 徐猛[2] LI Yuqi;WANG Guangmin;XU Meng(School of Economics and Management,China University of Geosciences,Wuhan 430074,China;State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]中国地质大学(武汉)经济管理学院,武汉430074 [2]北京交通大学轨道交通控制与安全国家重点实验室,北京100044
出 处:《系统工程理论与实践》2021年第11期3009-3019,共11页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(72071184,71890971,71991482)。
摘 要:本文应用反向传播(back-propagation,BP)神经网络方法研究随机Origin-Destination(OD)需求的城市道路交通网络设计问题.假设OD交通需求量服从某一分布,首先通过蒙特卡罗模拟的方法得到训练样本对神经网络进行训练并用测试样本测试所得到的神经网络,然后运用训练好的神经网络预测了系统总出行时间.将Nine-node网络作为测试网络,比较分析了不同样本规模下BP神经网络与蒙特卡罗模拟方法得出的结果和OD交通需求服从不同分布时系统总出行时间的分布情况.结果表明,BP神经网络的方法能够较好预测系统总出行时间的分布,且与蒙特卡罗模拟计算相比,能够产生一个合理且较窄的预测区间;当OD交通需求服从均匀分布、正态分布和对数正态分布时,系统总出行时间分布较为相似,接近正态分布.This paper studies back-propagation(BP) neural network for continuous transportation network design problem under stochastic Origin-Destination(OD) demand.Assuming that the demand between every OD follows some distribution,the paper trains the neural network by the obtained training samples via Monte Carlo simulation,and then applies the trained BP neural network to predict the total system travel time.Using Nine-node network as a test network,this paper compares distributions of total travel time by BP neural network and Monte Carlo simulation when OD traffic demand respectively follows uniform,normal and log-normal distributions.The results show that the BP neural network method can obtain a better distribution of the total system travel time when solving the transportation network design problem,and can yield a more accurate,narrower range than the traditional Monte Carlo simulation calculation.Besides,the distribution of total travel time is more like the normal distribution when OD traffic demand is respectively subject to the above three distributions.
关 键 词:随机Origin-Destination(OD)需求 双层规划模型 蒙特卡罗模拟 back-propagation(BP)神经网络
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.83.96