基于机器学习的比特币去匿名化方法研究  被引量:4

Research of De-Anonymizing Method Based on Machine Learning for Bitcoin

在线阅读下载全文

作  者:郭文生[1,2] 杨霞 冯志淇[2] 张露晨 杨菁林 GUO Wensheng;YANG Xia;FENG Zhiqi;ZHANG Luchen;YANG Jinglin(School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610000,China;Chengdu LianAn Technology Co.,Ltd.,Chengdu 610000,China;National Internet Emergency Center,Beijing 100000,China)

机构地区:[1]电子科技大学信息与软件工程学院,成都610000 [2]成都链安科技有限公司,成都610000 [3]国家互联网应急中心,北京100000

出  处:《计算机工程》2021年第12期47-53,共7页Computer Engineering

基  金:国家242信息安全专项(2020A028);四川省科技计划项目(2020YFG0481)。

摘  要:比特币是一种去中心化的匿名加密货币,是目前使用最广泛的数字资产之一,具有匿名性、无主权、无地域限制的特点,匿名性的特性也使得比特币被广泛应用于各种犯罪活动。为实现比特币的去匿名化,提出一种联合特征构造方法并构建随机森林与Softmax相结合的分类模型。为更好地区分不同类型比特币的交易行为,引用交易实体的概念,按照联合特征构造方法分别从地址、实体与交易网络结构3个方面在海量的交易数据中构造特征,并将其整合成联合特征向量。实验结果表明,该实体分类模型的类别识别精确率超过0.92,其能够有效提升执法机构对虚拟货币犯罪行为的调查取证能力。Bitcoin is one of the most widely used digital assets.It is a kind of decentralized anonymous cryptocurrency,and has no sovereignty or geographical restrictions.However,its anonymity makes it abused in illegal activities.To realize de-anonymization for Bitcoin,a classification model combining Random Forest(RF)and Softmax is proposed along with a joint features construction method.To distinguish the transactions of different kinds of Bitcoin,the concept of entity is introduced.On this basis,the joint feature construction method is used to construct features in massive transaction data from the aspects of address,entity and transaction network,and the constructed features are integrated into a joint feature vector.The experimental results show that the proposed entity classification model displays a classification accuracy of over 0.92.It can effectively assist law-enforcement agencies in investigating and collecting evidence of illegal activities involving virtual currency.

关 键 词:比特币 去匿名化 犯罪活动 交易实体 联合特征 随机森林 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象