复杂属性条件下基于Spark的clique社区搜索算法  

Spark-based clique Community Search Algorithm Under Complex Attribute Condition

在线阅读下载全文

作  者:佘鑫 何震瀛[2] SHE Xin;HE Zhenying(Software School,Fudan University,Shanghai 200441,China;School of Computer Science,Fudan University,Shanghai 200441,China)

机构地区:[1]复旦大学软件学院,上海200441 [2]复旦大学计算机科学技术学院,上海200441

出  处:《计算机工程》2021年第12期54-61,70,共9页Computer Engineering

基  金:国家重点研发计划“精准公共法律服务支撑技术与装备研究”(2018YFC0830900)。

摘  要:现有的社区搜索算法难以在网络中找到满足给定复杂属性条件的社区。同时,随着网络规模的不断扩大,单机串行的社区搜索算法也已无法有效地处理大规模的网络数据。针对复杂属性条件下的clique社区搜索问题,提出一种基于Spark的搜索算法。在Spark并行计算框架的基础上,结合图的结构特征和内容属性,根据由布尔表达式定义的复杂属性条件采取不同的搜索策略,搜索时利用属性的搜索成本和扩展成本进行局部优化,从而加快搜索过程。实验结果表明,与结构优先或属性优先的社区搜索算法相比,该算法在不同属性条件、网络规模和节点数目的情况下均能保证搜索准确性并提高搜索效率。Existing community search algorithms often fail to find the communities that satisfy the given complex attribute conditions in networks.At the same time,single-machine serial community search algorithms are not capable of processing massive network data generated by scaling networks.To address the problem,this paper proposes a Spark-based community search algorithm under complex attribute condition.The algorithm is constructed by using the parallel computing framework of Spark.Based on the structural features and content attributes of the graph,different search strategies are used according to the complex attribute conditions defined by Boolean expressions.The search cost and extension cost of the attribute are used for partial optimization to speed up the search process.Experimental results show that compared with the proposed structure-first community search algorithm and attribute-first community search algorithm,the proposed algorithm displays a higher search efficiency with the accuracy ensured in the cases of different network scales,numbers of nodes,and attribute conditions.

关 键 词:社区搜索 复杂属性条件 布尔表达式 Spark并行计算框架 clique结构 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象