基于计算机神经网络的雷达自适应抗干扰优化算法研究  被引量:4

A Study on Radar Adaptive Anti-jamming Optimization Algorithm Based on Computer Neural Network

在线阅读下载全文

作  者:陈志超[1] CHEN Zhichao(Baotou Radio and Television University,Baotou 014030,China)

机构地区:[1]包头广播电视大学,内蒙古包头014030

出  处:《现代雷达》2021年第11期51-56,共6页Modern Radar

基  金:内蒙古自治区科技项目(NJYT-21-B32)。

摘  要:反向传播(BP)神经网络算法能准确有效地对电子对抗干扰效能进行评估,并已获得理论和实践验证,但其存在训练时间长、收敛速度慢的缺陷。文中基于计算机BP神经网络,主要针对如何快速、准确计算出雷达自适应优化数值进行了大量分析,发现唯有将神经网络计算方式引入自适应优化计算方法才可以得出结果,最终按照实际情况再对该值进行修改,以此减少过程时间,提高收敛速度,增强评估时效性。在计算机大环境相同的运行程序条件下,就时间代价而言,BP神经网络跟踪的处理耗时比波形捷变提升了一个数量级,比波形固定的计算方法提升了两个数量级。通过计算神经网络映射数值,能够进一步对雷达抗干扰性能进行计算和测评。研究表明:倘若设定评分指标不变,BP神经网络法的雷达抗干扰效能指标要优于传统加权评估法。Back propagation(BP) neural network algorithm can accurately and effectively evaluate the jamming effectiveness of electronic countermeasure, which has been verified in practice and theory, but it has the defects of long training time and slow convergence speed. Based on computer BP neural network, a large number of analysis on how to quickly and accurately calculate radar adaptive optimization numbers is carried out, and the results can be gotten only by introducing the BP neural network algorithm into adaptive optimization algorithm. Then the results are modified according to actual situations so as to reduce the training time, improve the convergence speed, and enhance the timeliness of evaluation. Under the operating condition with the same computer environment, in terms of time cost, compared with waveform agility, the processing time of BP neural network tracking is increased by one order of magnitude;compared with waveform fixed method, the processing time is increased by two orders of magnitude. Using mapping ability of BP neural network, the radar anti-jamming effectiveness is calcuated and evaluated. The results show that the radar anti-jamming effectiveness index of BP neural network method is better than the traditional weighted evaluation method under the same scoring index.

关 键 词:反向传播神经网络 自适应 抗干扰 优化算法 

分 类 号:TN973[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象