检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐世武[1] 张诗 曾珏 刘秀珍[1] XU Shiwu;ZHANG Shi;ZENG Jue;LIU Xiuzhen(China University of Geosciences(Wuhan),Wuhan 430078,China;China Land Surveying and Planning Institute,Beijing 100035,China)
机构地区:[1]中国地质大学(武汉),武汉430078 [2]中国国土勘测规划院,北京100035
出 处:《遥感信息》2021年第5期56-63,共8页Remote Sensing Information
摘 要:鉴于深度卷积神经网络(deep convolutional neural networks,DCNN)的矩形感受野与土地利用图斑不规则形状范围的套合程度是影响土地利用图斑识别精度的重要因素,文章提出一套基于高分辨率影像的DCNN土地利用类型核查方法。该方法采用图斑掩膜裁切高分辨率影像,滤除矩形感受野内不套合部分,降低背景噪声,提高信噪比,从而准确识别图斑影像语义,通过检查语义与土地利用类型的符合性实现图斑的土地利用类型核查。在广水市第三次国土调查土地利用类型核查工作中,该方法获得了召回率为93.54%、准确率为93.57%的结果,为国土调查核查工作自动化提供了技术支撑。The degree of fit between the regular rectangular receptive field of deep convolutional neural networks(DCNN)and the irregular shape range of land use patch is an important factor that affects the accuracy of land use patch recognition.This paper proposes a DCNN land use classification verification method based on high-resolution images.The high-resolution image is cropped by using patch mask to filter out the parts that do not fit in the rectangular receptive field,which can reduce background noise and increase the signal-to-noise ratio,so as to accurately identify the semantics of the patch image.At last,it verifies the land use classification of the patches by checking the consistency between the semantics and the land use classification.In the third land use survey of Guangshui city,the proposed method obtains a recall rate of 93.54%and an accuracy rate of 93.57%,which provides technical support for the automation of national land survey and verification.
关 键 词:高分辨率影像 土地利用类型核查 深度卷积神经网络 多语义 低噪声
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.187.108