检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏琼[1] 巨永前 王旭[3] XIA Qiong;JU Yongqian;WANG Xu(National Demonstration Center for Experimental Civil Engineering Education,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China;Tarim University,Alar,Xingjiang 843300,China;Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China)
机构地区:[1]兰州交通大学土木工程国家级实验教学示范中心,兰州730070 [2]塔里木大学,阿拉尔843300 [3]兰州交通大学,兰州730070
出 处:《铁道工程学报》2021年第9期7-13,19,共8页Journal of Railway Engineering Society
基 金:国家自然科学基金项目(41662017);兰州市科技计划项目(2018-4-33)。
摘 要:研究目的:目前国内外针对非饱和土土压力的研究,主要以极限状态下的土体为研究对象,未考虑挡土墙位移对土压力的影响,在实际工程的应用中有局限性。本文采用水平分层法,得到墙体向离开填土方向发生平动模式下的非饱和土非极限状态下土压力统一解,为考虑墙体位移的非饱土土压力计算提供一种理论方法。研究结论:(1)考虑填土重度变化、土拱效应、土层间剪应力,以及黏聚力、摩擦角同墙体位移的非线性函数关系等诸多因素的影响,得到了平动模式下非饱和土土压力强度分布、土压力合力及其作用点的位置的计算式;(2)墙体位移达到极限时,本文理论结果与库仑理论较一致,两种方法对应的主动土压力分布在距墙底0.2H范围内差异明显;(3)是否考虑土拱效应、土层间剪应力对土压力合力大小不产生影响,但对距墙底0.2H范围内主动土压力分布产生影响;(4)本研究成果可应用于平动模式下非饱和填土挡墙土压力的求解计算。Research purposes:At present,the research on unsaturated soil earth pressure at home and abroad mainly focuses on the soil under the limit state.The influence of the displacement of the retaining wall on the soil pressure is not considered,which has limitations in practical engineering applications.In this paper,the horizontal layering method is used to obtain a unified solution of the non-limit state earth pressure of the unsaturated soil on retaining wall with translation from the filling,which provides a theoretical method for the calculation of the unsaturated soil earth pressure considering the wall displacement.Research conclusions:(1)Considering the influence of many factors such as the unit weight change of the filling,the soil arching effect,the shear stress between the soil layers,and the nonlinear function relationship between the cohesion,the friction angle and the wall displacement respectively,the calculation formula of unsaturated soil earth pressure distribution,the result forces of earth pressure and their position of action point at retaining wall under translation mode are obtained.(2)When the wall displacement reaches the limit,the theoretical solution in this paper is consistent with that of Coulomb′s theory.There is obvious difference between the solutions obtained from the two theories in the range of 0.2H from the bottom of the wall.(3)Whether to consider the soil arching effect and the inter-layer shear stress will not affect the resultant force of earth pressure,but will affect the distribution of earth pressure within 0.2H from the bottom of the wall.(4)The research results can be applied to the calculation of the earth pressure of the unsaturated filling on retaining wall under the translation mode.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7