检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:文明瑶[1] 廖伟国 WEN Ming-yao;LIAO Wei-guo(Zhujiang College,South China Agricultural University,Guangdong Guangzhou 510900,China)
出 处:《计算机仿真》2021年第11期290-294,共5页Computer Simulation
基 金:2017年广东省高等教育教学研究和改革项目(706)。
摘 要:以实现数据增量式精准挖掘为目的,提出基于机器学习的不确定数据增量式挖掘算法。以机器学习算法中的模糊c-均值聚类(FCM)算法为基础,通过主成分分析法筛选原始数据集中指标,利用Relief算法计算指标权重,实现FCM算法改进。改进FCM算法通过阈值定义目标函数,经样本数据分类、特征提取和聚类,使目标函数达到最小值,实现数据挖掘。实验结果表明,上述算法的数据样本分类符合率可达99.28%,分类准确率在98%左右,且分类耗时短、效率高;特征提取能力受数据量增加影响较小;在数据增量情况下,改进算法增量式挖掘准确率保持在95%~98%之间,且所需迭代次数少。In order to realize incremental accurate data mining, an incremental uncertain data mining algorithm based on machine learning is proposed. Based on the fuzzy c-means clustering(FCM) algorithm in machine learning algorithm, the indexes in the original data set were selected by principal component analysis, and the index weight was calculated by relief algorithm to improve the FCM algorithm. Then, the improved FCM algorithm defined the objective function through threshold, and made the objective function reach the minimum value through sample data classification, feature extraction and clustering to realize data mining. The experimental results show that the data sample coincidence rate of the algorithm can reach 99.28%, the classification accuracy is about 98%, and the classification time-consuming us short and the efficiency is high;The ability of feature extraction is less affected by the increase of data volume;In the case of data increment, the accuracy incremental mining of the improved algorithm remains between 95% ~ 98%, and the number of iterations is less.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38