检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:单明岳 潘鹏[1,3] 王海深 安晓文 潘文[5] 管庆松 徐赵东[7] SHAN Mingyue;PAN Peng;WANG Haishen;AN Xiaowen;PAN Wen;GUAN Qingsong;XU Zhaodong(Department of Civil Engineering,Tsinghua University,Beijing 100084,China;Central Research Institute of Building and Construction Co.,Ltd,MCC Group,Beijing 100088,China;Key Laboratory of Civil Engineering Safety and Durability of China Ministry of Education,Tsinghua University,Beijing 100084,China;Yunnan Institute of Earthquake Engineering,Kunming 650041,China;School of Civil Engineering,Kunming University of Science and Technology,Kunming 650500,China;Quakesafe Technologies Co.,Ltd,Kunming 650217,China;School of Civil Engineering,Southeast University,Nanjing 210096,China)
机构地区:[1]清华大学土木工程系,北京100084 [2]中冶建筑研究总院有限公司,北京100088 [3]清华大学土木工程安全与耐久教育部重点实验室,北京100084 [4]云南省地震工程研究院,云南昆明650041 [5]昆明理工大学建筑工程学院,云南昆明650500 [6]震安科技股份有限公司,云南昆明650217 [7]东南大学土木工程学院,江苏南京210096
出 处:《建筑结构学报》2021年第12期1-10,共10页Journal of Building Structures
基 金:国家重点研发计划项目(2019YFC1509303);山东省高校土木结构防灾减灾协同创新中心基金项目(XTZ201905)。
摘 要:消能减震技术能显著提高建筑结构的抗震能力,但目前对消能子结构的性能目标和设计方法尚未达成共识。针对工程中较常见的柱间连接型消能子结构,提出基于多遇地震作用下弹性分析的设计方法,给出设计流程和设计要点。对1个钢筋混凝土纯框架子结构试件和2个消能子结构试件进行低周反复加载试验,考察消能子结构的抗震性能,检验所提设计方法的合理性。研究结果表明:消能子结构承载力约为纯框架与阻尼器承载力之和,单周耗能能力约等于纯框架与阻尼器各自耗能之和;阻尼器损伤累积直至完全剪断过程中,消能子结构承载力和刚度逐渐下降;阻尼器破坏后,周围框架抗震性能与加载同阶段的纯框架性能基本一致。按所提设计方法设计的消能子结构在罕遇地震作用下破坏模式合理,能保证阻尼器充分发挥消能效果;增大消能子结构纵向钢筋配筋量对改善其塑性铰状态和结构破坏模式无显著效果。Energy dissipation technology can effectively improve the seismic behavior of building structures.However,the consensus has not been achieved on the target performance and design method of the energy dissipation substructures.The design method based on elastic analysis under frequent earthquakes was proposed for the energy dissipation substructure using the inter-column connection.The design procedure and the associated key points were illustrated.A reinforced concrete frame substructure and two energy dissipation substructures were tested using low-cycle reversed loading to investigate the seismic performance of energy dissipation substructures and to validate the feasibility of the proposed design methods.The test results show that the bearing capacity of energy dissipation substructure is about the sum of the bearing capacity of the surrounding frame and that of the damper,and the energy dissipation capacity of a single cycle is almost equal to the sum of the energy dissipation of the surrounding frame and that of the damper.In the process of damper damage evolution,the bearing capacity and stiffness of the energy dissipation substructure decrease gradually,and the seismic behavior of the surrounding frame is similar to that of the pure frame substructure at the same loading stage after the complete failure of damper.The substructure designed using the proposed design method exhibits the expected failure mode,and optimizes the energy dissipation capacity of the damper.Further increasing the longitudinal steel rebars of the surrounding frame does not notably influence the damage state of the plasticity hinge or the failure mode of the surrounding substructure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.135.39