一种基于活动轮廓模型的PET-CT肺肿瘤分割方法  

A PET-CT Lung Tumor Segmentation Method Based on Active Contour Model

在线阅读下载全文

作  者:宗静静[1,2] 邱天爽 朱广文 ZONG Jingjing;QIU Tianshuang;ZHU Guangwen(School of Computer and Communication Engineering,Dalian Jiaotong University,Dalian 116028,China;Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116024,China;Department of Nuclear Medicine,First Affiliated Hospital,Dalian Medical University,Dalian 116011,China)

机构地区:[1]大连交通大学计算机与通信工程学院,大连116028 [2]大连理工大学电子信息与电气工程学部,大连116024 [3]大连医科大学附属第一医院核医学科,大连116011

出  处:《电子与信息学报》2021年第12期3496-3504,共9页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61671105);辽宁省教育厅科学研究项目(JDL2020029)。

摘  要:针对PET-CT肺肿瘤分割中存在的没有充分将医生临床经验融入到算法设计的问题,该文利用PET高斯分布先验,结合区域可伸缩拟合(RSF)模型和最大似然比分类(MLC)准则,提出一种基于变分水平集的混合活动轮廓模型RSF;L。进一步,借鉴人工勾画肺肿瘤过程中融合图像的重要价值,提出了基于RSF;L的PET-CT肺肿瘤融合图像分割方法。实验表明,所提出方法较好地实现了有代表性的非小细胞肺肿瘤(Non-Small Cell Lung Cancer,NSCLC)的精确分割,主客观结果优于对比方法,可为临床提供有效的计算机辅助分割结果。To solve the problem that the doctors’clinical experience is not fully integrated into the algorithm design in PET-CT lung tumor segmentation,a hybrid active contour model named RSF_ML based on variational level set is proposed by combining with the PET Gaussian distribution prior,Region Scalable Fitting(RSF)model and Maximum Likelihood ratio Classification(MLC)criterion.Furthermore,referring to the important value of fusion image in the process of lung tumor manual delineation,a segmentation method for PET-CT lung tumor fusion image based on RSF_ML is proposed.Experiments show that the proposed method can achieve accurate segmentation of representative Non-Small Cell Lung Cancer(NSCLC),and the subjective and objective results are better than the comparison method,which can provide effective computeraided segmentation results for clinic.

关 键 词:活动轮廓模型 肺肿瘤分割 变分水平集 最大似然比分类 

分 类 号:TN957.52[电子电信—信号与信息处理] TP391.41[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象