一种基于区间解析冗余关系的故障诊断方法  被引量:4

Fault Diagnosis Based on Interval Analytic Redundancy Relation

在线阅读下载全文

作  者:莫浩彬 李艳军[1] MO Haobin;LI Yanjun(College of Civil Aviation,Nanjing University of Aeronautics&Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学民航学院,南京211106

出  处:《南京航空航天大学学报》2021年第6期972-980,共9页Journal of Nanjing University of Aeronautics & Astronautics

摘  要:在基于解析冗余关系的故障诊断应用中,系统不确定性方法会造成漏诊和误诊。本文在传统键合图线性差分变化技术(Bond graph-linear fractional transformation technique,BG-LFT)中引入区间分析理论,提出一种基于区间解析冗余关系的故障诊断方法。该方法在基于键合图的解析冗余关系故障诊断方法的基础上,首先结合BG-LFT和区间分析理论对参数不确定性和测量不确定性进行统一建模。然后,将键合图模型扩展为不确定性键合图模型,并推导区间解析冗余关系。最后,利用区间数学运算方法计算区间解析冗余关系,得到诊断阈值。将该方法应用于电动静液作动器参数型故障及传感器故障的故障诊断中。结果表明,与单纯使用BG-LFT相比,本文方法能更有效获取电静液作动器故障诊断依据,避免系统不确定性对诊断结果的干扰。Aiming at the problem of missed diagnosis and misdiagnosis caused by the system uncertainty in the application of analytic redundancy relation based fault diagnosis,this paper introduces the interval analysis into the traditional bond graph linear functional transformation technique(BG-LFT),and proposes an interval redundancy relation based fault diagnosis method. Firstly, the unified modeling for parameter and measurement uncertainty based on BG-LFT are combined with the interval analysis method. Then,the bond graph model is extended to the uncertain bond graph model,and the analytical redundancy relations are transformed into the interval form. Finally,the diagnostic threshold is calculated by the interval mathematical calculation method. The method is applied to the parametric and sensor fault diagnosis of an electro-hydraulic actuator. The results show that compared with single BG-LFT,the proposed method can obtain the diagnosis basis of the electro-hydraulic actuator more effectively,and avoid the interference of system uncertainty to the diagnosis results.

关 键 词:解析冗余关系 故障诊断 区间分析 不确定性 键合图 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象