检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王思远 李强子 王红岩 张源 杜鑫 高亮 Wang Siyuan;Li Qiangzi;Wang Hongyan;Zhang Yuan;Du Xin;Gao Liang(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院空天信息创新研究院,北京100101 [2]中国科学院大学资源与环境学院,北京100049
出 处:《遥感技术与应用》2021年第5期1057-1071,共15页Remote Sensing Technology and Application
基 金:国家重点研发计划项目“主要粮食作物气象灾害监测技术体系研发”(2017YFD0300402);国家重点研发计划项目“三大粮食作物气象灾害预警模型研制”(2017YFD0300404⁃1)。
摘 要:针对太阳诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence,SIF)可以有效指示陆表植被水分胁迫的特点,提出了归一化叶绿素荧光干旱指数(Normalized SIF Drought Index,NSDI)用于黄淮海地区冬小麦旱情监测。该方法首先基于哨兵-5p卫星(Sentinel-5p)对流层观测仪(Tropospheric Monitoring Instrument,TROPOMI)传感器反演得到的SIF原始产品集,通过0.1°等经纬步长栅格化处理为空间连续数据,然后基于时间序列分析进行了缺失值线性插补,再经过SG滤波重建获得了高时空分辨率荧光数据集。以此数据集为基础,结合研究区冬小麦分布数据构建NSDI指数。通过选取典型旱情事件对比分析,NSDI指数与同期归一化植被指数(Normalized Difference Vegetation Index,NDVI)以及温度植被干旱指数(Temperature Vegetation Drought Index,TVDI)都有良好的相关性,其中与NDVI的R^(2)为0.60,与TVDI的R^(2)为0.41;NSDI指数与野外土壤水分调查结果也高度相关,其中河北样区R^(2)为0.53,山东样区R^(2)为0.54,整体R^(2)为0.51;通过物联网监测数据分析显示,NSDI指数可以在优于2 d的滞后期内响应旱情的变化,其变化趋势与田间土壤水分保持高度相关。实验结果表明:NSDI指数可以在时空尺度上有效指示黄淮海地区冬小麦旱情。According to the characteristic that Solar-Induced chlorophyll Fluorescence(SIF)can effectively indicate the water stress of land surface vegetation,we proposed a Normalized Solar-Induced Chlorophyll Fluorescence Drought Index(NSDI)for winter wheat drought monitoring in the Huang-Huai-Hai region.First,the original SIF data retrieved by the Sentinel-5p Tropospheric Instrument(TROPOMI)were processed into spatially continuous data with a spatial resolution of 0.1 degree.Missing values were then filled via the linear interpolation based on time series analysis,and S-G filters were applied to reconstruct high spatial and temporal resolution SIF dataset.The NSDI is developed using this reconstructed SIF dataset and winter wheat distribution data.The analysis of typical drought events revealed that the NSDI and the Normalized Difference Vegetation Index(NDVI)are strongly correlated with the R^(2) of 0.60,the NSDI and the temperature vegetation drought index(TVDI)are also strongly correlated in different mature regions,with the highest R^(2) of 0.66 in Yanshan region,and the lowest R^(2) of 0.44 in Huanghuai plain region.The NSDI index is also highly correlated with the insitu soil moisture data,with an R^(2) of 0.53 and 0.54 respectively in Hebei and Shandong sample area,and an overall R^(2) of 0.51.Analysis of monitoring data from the Internet of Things shows that the NSDI index can respond to changes of drought within a lag period of less than 2 days,and its change trend is highly correlated with soil moisture in the field.The experimental results show that the NSDI index can effectively indicate the drought of winter wheat in Huang-Huai-Hai region from the spatiotemporal perspective.
关 键 词:太阳诱导叶绿素荧光(SIF) 旱情监测 NSDI指数 Sentinel⁃5p TROPOMI
分 类 号:S423[农业科学—植物保护] TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28