山西四城市大气污染特征及PM_(2.5)传输规律研究  被引量:8

Air Pollution Characteristics and PM_(2.5) Transportation in Four Cities of Shanxi,China

在线阅读下载全文

作  者:李瑞金 郝乾龙 刘洋 董川 翁建霖 LI Ruijin;HAO Qianlong;LIU Yang;DONG Chuan;YUNG Ken Kim Lan(Institute of Environmental Science,Shanxi University,Taiyuan 030006,China;Department of Biology,Hong Kong Baptist University,Hong Kong,China)

机构地区:[1]山西大学环境科学研究所,山西太原030006 [2]香港浸会大学生物系,中国香港

出  处:《山西大学学报(自然科学版)》2021年第5期1031-1044,共14页Journal of Shanxi University(Natural Science Edition)

基  金:国家自然科学基金(91843301);山西省科技厅社会发展项目(201903D321079);山西省百人计划项目(2017);山西省高等学校科技创新项目(2020L10047)。

摘  要:山西省太原、阳泉、长治、晋城市属于京津冀大气污染传输通道“2+26”城市。基于2020年大气环境质量监测数据和同步常规气象观测数据,分析上述4城市在非采暖期和采暖期空气6种污染物质量浓度变化特征及其与气象因子的相关性。采用后向轨迹聚类(HYSPLIT)分析法、潜在源贡献因子(PSCF)分析和浓度权重轨迹(CWT)分析,探讨4城市PM_(2.5)污染的输送路径和潜在源区。研究结果表明,4城市采暖期5种污染物(PM_(2.5)、PM10、SO2、NO2、CO)平均质量浓度明显高于非采暖期,而非采暖期O3平均质量浓度高于采暖期。非采暖期O3和采暖期PM_(2.5)超标天数占比较高。在各城市中PM_(2.5)污染呈现不同的区域分布特点。除采暖期O_(3)外,4城市非采暖期和采暖期PM_(2.5)与其他污染物均呈正相关关系(P<0.001)。4城市非采暖期PM_(10)和O_(3)与温度呈弱正相关(P<0.001),PM_(10)、SO_(2)、NO_(2)、和O_(3)与湿度呈弱负相关(P<0.001)。采暖期PM_(2.5)与湿度呈正相关(P<0.001),与能见度呈负相关(P<0.001)。PM_(2.5)污染传输中,太原、阳泉、长治和晋城非采暖期主要受东南向输送气团的影响,其占比分别为52.13%、40.35%、45.51%和51.31%;4城市采暖期PM_(2.5)气团轨迹主要来自西北方向,气团携带的PM_(2.5)浓度较高。PSCF和CWT分析显示,虽然不同城市PM_(2.5)污染的潜在源区和浓度贡献存在差异,但4城市非采暖期的潜在源区和WPSCF和WCWT高值区域主要分布在河南和河北地区、江苏、安徽、山东等省份的部分城市以及山西省周边区域。采暖期的潜在源区主要分布在京津冀传输通道-河南和河北部分城市、安徽、山东等省部分城市以及山西省四城市周边区域。Taiyuan,Yangquan,Changzhi,and Jincheng in Shanxi,China belong to the"2+26"passage cities in the Beijing-Tianjin-Hebei region.The air pollution characteristics of four cities during the non-heating period and the heating period and the correlations of six air pollutants with meteorological factors were investigated based on the urban atmospheric environment quality monitoring and conventional meteorological synchronous data of 2020.The backward trajectory clustering(HYSPLIT)analysis,potential source contribution function(PSCF)analysis and concentration weighted trajectory(CWT)analysis were used to explore the pollution transportation pathway and the distribution of potential pollution sources affecting fine particulate matter(PM_(2.5))in the four cities.The results showed that the average mass concentrations of five pollutants(PM_(2.5),PM_(10),SO_(2),NO_(2),and CO)during the heating period in the four cities were higher than the non-heating period,but the average mass concentration of O_(3) during the non-heating period was higher than the heating period.O3 during the non-heating period and PM_(2.5)during the heating period accounted for a high proportion of days exceeding the standard.The PM_(2.5)pollution showed different regional distribution in different cities.Except for O3 during the heating period,PM_(2.5)during the non-heating period and the heating period in the four cities were positively correlated with other pollutants(P<0.001).During the non-heating period in four cities,PM_(10) and O_(3) were weakly positively correlated with temperature(P<0.001),while PM_(10),SO_(2),NO_(2),and O_(3) weakly negatively correlated with humidity(P<0.001).PM_(2.5)was positively correlated with humidity(P<0.001)during the heating period and negatively correlated with visibility(P<0.001).The transmission of PM_(2.5)pollution during the non-heating period of four cities was mainly affected by air masses transporting northwestward,acounting for 52.13%,40.35%,45.51%,and 51.31%,respectively.During the heating period in the fou

关 键 词:大气污染物 PM_(2.5) 后向轨迹 传输路径 潜在源区 

分 类 号:X513[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象