物联网云随访方式可改善持续性不卧床腹膜透析患者的血压达标率  被引量:3

Internet of things follow-up improves blood pressure management in patients with continuous ambulatory peritoneal dialysis

在线阅读下载全文

作  者:李爱华[1] 邓丽贞 赖爱军 卓婉玲 邓秀姗 邓颖辉[4] 梁孟君[1] 姜宗培[1] Li Aihua;Deng Lizhen;Lai Aijun;Zhuo Wanling;Deng Xiushan;Deng Yinghui;Liang Mengjun;Jiang Zongpei(Department of Nephrology,the Sixth Affiliated Hospital,Sun Yat-sen University,Guangzhou 510655,China;Department of Nephrology,the First People's Hospital of Zhaoqing,Zhaoqing 526000,China;Department of Nephrology and Rheumatology,Nanhai District People's Hospital of Foshan,Foshan 528200,China;Department of Nursing,the Sixth Affiliated Hospital,Sun Yat-sen University,Guangzhou 510655,China)

机构地区:[1]中山大学附属第六医院肾内一科,广州510655 [2]肇庆市第一人民医院肾内科,肇庆526000 [3]佛山市南海区人民医院肾脏风湿科,佛山528200 [4]中山大学附属第六医院护理部,广州510655

出  处:《中华肾脏病杂志》2021年第12期956-966,共11页Chinese Journal of Nephrology

基  金:广东省护理学会立项课题(gdhlxueh2019zx013);中山大学附属第六医院引进人才科研启动费(Z0513003)。

摘  要:目的通过与传统随访模式对比,探讨物联网云随访方式对持续性不卧床腹膜透析(continuous ambulatory peritoneal dialysis,CAPD)患者血压达标率的影响。方法采用回顾性队列研究,纳入2019年5月至9月参与本研究的3家腹膜透析中心规律随访的CAPD患者,根据其随访方式分为物联网云随访组及传统随访组,观察两组患者随访1年间血压达标率的差异。研究观察主要指标为随访血压达标率≥85%的患者比例。结果该研究共纳入患者75例,其中物联网随访组32例,传统随访组43例。两组患者基线资料对比结果显示,物联网随访组患者透析龄短于传统随访组(P<0.01)。经过中位时间9(9,12)个月的随访,患者血压达标率中位数为85.2%(65.2%,95.1%),而物联网随访组患者中血压达标率≥85%者21例(65.6%),明显高于传统随访组(17例,39.5%)(χ^(2)=4.996,P=0.025)。随访3、6、9、12个月,物联网随访组患者血压达标率≥85%的累积概率分别为97%、90%、90%、52%,而传统随访组患者的相应概率分别为95%、86%、55%、34%(Log-rankχ^(2)=4.774,P=0.029)。校正了年龄、性别、透析龄的多因素Cox比例风险回归模型结果提示,基线血肌酐水平(每增加1μmol/L,HR=1.002,95%CI 1.000~1.003,P=0.033)、随访方式(物联网随访模式对比传统随访模式,HR=0.023,95%CI 0.003~0.210,P=0.001)、总随访次数(每增加1次,HR=0.879,95%CI 0.823~0.939,P<0.001)及随访后体重达标率(每增加1%,HR=0.964,95%CI 0.939~0.991,P=0.008)均是血压达标率<85%的独立影响因素。亚组分析结果显示,透析龄<10个月的患者及随访护士为兼职的腹膜透析中心采用物联网随访方式有助于改善血压达标情况。结论物联网云随访方式有助于改善CAPD患者血压达标率。CAPD患者基线血肌酐水平升高是血压达标的独立危险因素,而物联网随访、总随访次数增加及随访后体重达标率增加则为血压达标的保护性因素。对于透析龄短的腹膜�Objective To explore the difference of blood pressure compliance rate in patients with continuous ambulatory peritoneal dialysis(CAPD)in the internet of things(IoT)follow-up and conventional care.Methods CAPD patients from 3 peritoneal dialysis centers from May 2019 to October 2019 were included in this retrospective cohort study.They were divided into IoT group and conventional care group according to the way of follow-up.The difference in blood pressure compliance rate during 1 year of follow-up between the two groups was observed.The primary outcome was defined as the proportion of patients with blood pressure compliance rate≥85%.Results A total of 75 patients were included in this study,in during 32 patients in IoT group and 43 patients in conventional care group.The comparison of baseline data between the two groups showed that the dialysis age of patients in IoT group was shorter(P<0.01).After a median of 9(9,12)months follow-up,the median blood pressure compliance rate was 85.2%(65.2%,95.1%),and 25 patients(65.6%)in IoT group had met the target of blood pressure compliance rate≥85%,which was significantly higher than that in the conventional care group(17 cases,39.5%)(χ^(2)=4.996,P=0.025).The cumulative probability of the target of blood pressure compliance rate≥85%was 97%,90%,90%and 52%,respectively in IoT group,while 95%,86%,55%and 34%,respectively in conventional care group after 3,6,9 and 12 months of follow-up,and the different between the two groups was significant(Log-rankχ^(2)=4.774,P=0.029).Adjusted for age,sex and dialysis age,the multivariate Cox proportional risk regression model showed that serum creatinine level(for every 1μmol/L increase,HR=1.002,95%CI 1.000-1.003,P=0.033),follow-up mode(IoT follow-up vs conventional care,HR=0.023,95%CI 0.003-0.210,P=0.001),follow-up times(for each additional time,HR=0.879,95%CI 0.823-0.939,P<0.001)and the rate of weight compliance(for each increase of 1%,HR=0.964,95%CI 0.939-0.991,P=0.008)was the independent influencing factors for the blood pressu

关 键 词:腹膜透析 持续不卧床 随访研究 血压 危险因素 

分 类 号:R459.5[医药卫生—治疗学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象