High-precision chaotic radial basis function neural network model:Data forecasting for the Earth electromagnetic signal before a strong earthquake  

在线阅读下载全文

作  者:Guocheng Hao Juan Guo Wei Zhang Yunliang Chen David AYuen 

机构地区:[1]School of Mechanical Engineering and Electronic Information,China University of Geosciences,Wuhan 430074,China [2]School of Computer Science,China University of Geosciences,Wuhan 430074,China [3]Department of Mathematics,Duke University,Durham,NC 27708,USA [4]Department of Applied Physics and Applied Mathematics,Columbia University,New York,NY 10027,USA

出  处:《Geoscience Frontiers》2022年第1期364-373,共10页地学前缘(英文版)

基  金:sponsored by the National Natural Science Foundation of China(61333002);Open Research Foundation of the State Key Laboratory of Geodesy and Earth’s Dynamics(SKLGED2018-5-4-E);Foundation of the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems(ACIA2017002);111 projects under Grant(B17040);Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing(KLIGIP-2017A02);supported by the Three Gorges Research Center for geo-hazard;Ministry of Education cooperation agreements of Krasnoyarsk Science Center and Technology Bureau;Russian Academy of Sciences。

摘  要:The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.

关 键 词:Earth’s natural pulse electromagnetic field Chaos theory Radial Basis Function neural network Forecasting model 

分 类 号:P631.325[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象