Computational ghost imaging with deep compressed sensing  被引量:1

在线阅读下载全文

作  者:Hao Zhang Yunjie Xia Deyang Duan 张浩;夏云杰;段德洋(School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China;Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China)

机构地区:[1]School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China [2]Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China

出  处:《Chinese Physics B》2021年第12期455-458,共4页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11704221,11574178,and 61675115);the Taishan Scholar Project of Shandong Province,China(Grant No.tsqn201812059)。

摘  要:Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.

关 键 词:computational ghost imaging compressed sensing deep convolution generative adversarial network 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] O439[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象