检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hao Zhang Yunjie Xia Deyang Duan 张浩;夏云杰;段德洋(School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China;Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China)
机构地区:[1]School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China [2]Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China
出 处:《Chinese Physics B》2021年第12期455-458,共4页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.11704221,11574178,and 61675115);the Taishan Scholar Project of Shandong Province,China(Grant No.tsqn201812059)。
摘 要:Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.
关 键 词:computational ghost imaging compressed sensing deep convolution generative adversarial network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222