检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马海蓉 丁飞[1,2] 章华涛 张海涛[1,2] 庄衡衡[1,2] 张登银 MA Hairong;DING Fei;ZHANG Huatao;ZHANG Haitao;ZHUANG Hengheng;ZHANG Dengyin(Jiangsu Key Laboratory of Broadband Wireless Communication and Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Nanjing Institute of Astronomical Optics&Technology,National Astronomical Observatories,CAS,Nanjing 210042,China;Key Laboratory of Astronomical Optics&Technology,CAS,Nanjing 210042,China)
机构地区:[1]南京邮电大学江苏省宽带无线通信和物联网重点实验室,江苏南京210003 [2]南京邮电大学物联网学院,江苏南京210003 [3]中国科学院国家天文台南京天文光学技术研究所,江苏南京210042 [4]中国科学院天文光学技术重点实验室,江苏南京210042
出 处:《中国测试》2021年第12期29-33,共5页China Measurement & Test
基 金:国家自然科学基金(11973068);江苏省“六大人才高峰”高层次人才培养资助项目(DZXX-008);中国博士后科学基金面上资助项目(2019M661900);江苏省博士后科研资助计划(2019K026);南京邮电大学科研创新基金(NY220028)。
摘 要:高精度光栅测量系统和光谱识别定标对于大口径空间天文望远镜观测至关重要,将图像的智能识别与光栅测量系统相结合,可以解决传统光栅测试过程中目标识别困难和特征难以提取的问题。由于目标光源点光谱成像的特点以及背景噪声的干扰,图像目标的自动识别和位置提取精度受限。该文设计并构建基于观测图像识别的光栅测试分析系统,利用光栅的分光特性,结合图像传感器进行光电转换和特征识别,通过分析目标光栅图像的关键特征,利用图像预处理算法对光栅图像进行反色和模糊去噪,获得更清晰的光斑特征,通过密度质心法提取光斑中心,再由高斯曲面拟合提取光栅图像的目标中心和像素分布特征。实验结果表明,相比传统密度质心法,该文方法能够准确提取光栅图像中多目标的中心,像素幅值识别精度提升1个像素以上。High-precision raster measurement system and spectral recognition calibration are essential for largeaperture space telescope observations.Combining intelligent image recognition with the raster measurement system can solve the problem of difficulty in target recognition and feature extraction in the traditional raster process.Due to the characteristics of spectral imaging of target light source points and the interference of background noise,the accuracy of automatic identification and location extraction of image targets is limited.This paper designs and constructs a raster test and analysis system based on observation image recognition.It uses the spectral characteristics of the raster and combines the image sensor to perform photoelectric conversion and feature recognition.By analyzing the key features of the target grating image,the image preprocessing algorithm is used to perform the raster image.Reverse color and blur and denoise to obtain a clearer spot feature.The spot center is extracted by the density centroid method,and then the target center and pixel distribution characteristics of the raster image are extracted by Gaussian surface fitting.Experimental results show that compared with the traditional density centroid method,this method can accurately extract the center of multiple targets in the raster image,and the pixel amplitude recognition accuracy is improved by more than 1 pixel.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7