检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐琳 陈雨泽 刘家昊 XU Lin;CHEN Yu-ze;LIU Jia-hao(Department of Physics,Beijing Normal University,Beijing 100875,China)
出 处:《大学物理》2022年第1期79-83,共5页College Physics
摘 要:Ising模型是一种应用广泛的磁自旋相互作用模型,其二维情况严格求解极为复杂,实际应用中通常利用Wolff算法进行模拟.Wolff算法目前被认为是最好的聚类翻转Monte-Carlo算法.Metropolis和Swendsen-Wang算法同Wolff算法类似,理论上也适用于Ising模型的模拟,却未有文章将三者系统对比来说明Wolff算法的优越性,本科课程对于Monte-Carlo算法的介绍也较少.本文分别利用三种算法模拟了二维Ising模型,介绍了其算法原理、参数选择及实现方式,分析对比了三种算法的模拟效果和适用范围,从而总结说明在二维Ising模型的模拟中Wolff算法效果更好的原因.Ising model is a widely used magnetic spin interaction model.It is very complicated to solve the analytic solution in 2-D case.In practical application,Wolff algorithm is usually used to simulate the Ising model and it is considered to be the best clustering flipping Monte Carlo algorithm.Metropolis and Swendsen-Wang algorithms are similar to Wolff algorithm,and theoretically they are also applicable to the simulation of Ising model.So far,there is no paper has compared the three algorithms to show the advantages of Wolff algorithm,and there are few introductions of Monte Carlo algorithm in undergraduate courses.In this paper,we use these three algorithms to simulate 2-D Ising model and introduce the principle,parameter selection and implementation of the algorithms.In the end,we compare the simulation effect and application range of the three algorithms,and summarize the reason why Wolff algorithm has better effect in the simulation of 2D Ising model.
关 键 词:二维ISING模型 MONTE-CARLO法 Metropolis算法 Wolff算法 Swendsen-Wang算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.157.68