Balanced Functional Maps for Three-Dimensional Non-Rigid Shape Registration  

在线阅读下载全文

作  者:Xu-Peng Wang Hang Lei Yan Liu Nan Sang 

机构地区:[1]with the School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054

出  处:《Journal of Electronic Science and Technology》2021年第4期369-378,共10页电子科技学刊(英文版)

基  金:the China Scholarship Council under Grant No.201406070059.

摘  要:Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.

关 键 词:Functional map(FM) Laplace-Beltrami operator shape registration three-dimensional(3D)non-rigid shape. 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象