检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王亚朝 赵伟[1] 徐海洋 刘建业[1] WANG Ya-Zhao;ZHAO Wei;XU Hai-Yang;LIU Jian-Ye(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106)
机构地区:[1]南京航空航天大学自动化学院,南京211106
出 处:《自动化学报》2021年第12期2784-2790,共7页Acta Automatica Sinica
基 金:国家自然科学基金(61533008,61374115,61603181);中央高校基本科研业务费专项基金(NS2018021);江苏高校优势学科建设工程项目资助。
摘 要:导航传感器在使用过程中容易发生故障,针对传统方法对其间歇性和渐变性故障识别率低的问题提出了一种基于多阶段注意力机制的多传感器故障识别算法.该算法采用基于长短期记忆神经网络和注意力机制的编码器-解码器结构,根据多类导航传感器数据之间的空间相关性和时间相关性来进行多传感器的故障互判.经验证,该算法对多种类传感器的故障识别率高达97.5%,可以高效地实现故障的检测和分类.该方法可以准确识别出故障传感器和故障类型,具有很强的工程应用价值.Since navigation sensors may malfunction in use,a multi-sensor fault diagnosis algorithm based on multistage attention mechanism is proposed to solve the problem of low diagnosis rate of intermittent defect and gradual fault.An encoder-decoder structure based on the long short term memory(LSTM)neural network and attention mechanism is adopted in the algorithm,and fault mutual diagnosis between multiple navigation sensors is based on spatial and time correlation between the data of multiple navigation sensors.It is verified that the fault diagnosis rate of the algorithm for multi-type sensors is as high as 97.5%.Besides,sensor faults can be detected and classified effectively by this algorithm.This method which has a strong engineering application value can accurately identify the fault sensor and fault type.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7