Effects of particle size,bimodality and heat treatment on mechanical properties of pumice reinforced aluminum syntactic foams produced by cold chamber die casting  被引量:1

在线阅读下载全文

作  者:Cagin Bolat Ismail Cem Akgun Ali Goksenli 

机构地区:[1]Faculty of Mechanical Engineering,Istanbul Technical University,34437,Istanbul,Turkey

出  处:《China Foundry》2021年第6期529-540,共12页中国铸造(英文版)

摘  要:In recent years,metal matrix syntactic foams(MMSFs)have become highly attractive owing to their unique physical,microstructural and mechanical features.Due to their promising potential for different industrial areas like automotive,aviation,and defense,these advanced engineering materials can also be evaluated as serious alternatives to particle reinforced metallic composites and conventional metallic foams.Differently from previously reported laboratory scaled techniques in the literature,this experimental effort focuses on the feasibility of MMSF manufacturing via a fully automated and industrial-based cold chamber die casting technique.Accordingly,1-2 mm,2-4 mm,and bimodal(50vol.%)natural-based pumice filled aluminum syntactic foams were manufactured utilizing a purpose-made casting machine.Physical,macroscopic,and microscopic examinations show that all of the fabricated samples display perfect matrix/filler harmony.Average density levels of fabricated syntactic foams range between 1.50 and 1.80 g·cm^(-3) depending upon the pumice particles size interval.To assess mechanical responses,quasi-static compression tests were performed.Furthermore,half of the foam samples were subjected to heat treatment to explore possible influences of aging on the compressive features and damage modes.Results indicate that although the heat treatment enhances the compressive strength,plateau stress,and energy absorption properties of the fabricated foams,it changes damage mode of the samples by causing brittle dominant deformation.

关 键 词:PUMICE cold chamber die casting syntactic foam BIMODALITY damage characteristic 

分 类 号:TG146.21[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象