检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱骁 杨庚[2] Zhu Xiao;Yang Geng(College of Computer Science,University of Posts&Telecommunications,Nanjing 210023,China;Jiangsu Key Laboratory of Big Data Security&Intelligent Processing,University of Posts&Telecommunications,Nanjing 210023,China)
机构地区:[1]南京邮电大学计算机学院,南京210023 [2]南京邮电大学江苏省大数据安全与智能处理重点实验室,南京210023
出 处:《计算机应用研究》2022年第1期236-239,248,共5页Application Research of Computers
基 金:国家自然科学基金面上项目(61872197,61972209)。
摘 要:为了让不同组织在保护本地敏感数据和降维后发布数据隐私的前提下,联合使用PCA进行降维和数据发布,提出横向联邦PCA差分隐私数据发布算法。引入随机种子联合协商方案,在各站点之间以较少通信代价生成相同随机噪声矩阵。提出本地噪声均分方案,将均分噪声加在本地协方差矩阵上。一方面,保护本地数据隐私;另一方面,减少了噪声添加量,并且达到与中心化差分隐私PCA算法相同的噪声水平。理论分析表明,该算法满足差分隐私,保证了本地数据和发布数据的隐私性,较同类算法噪声添加量降低。实验从隐私性和可用性角度评估该算法,证明该算法与同类算法相比具有更高的可用性。To allow different organizations to jointly use PCA for dimensionality reduction and data release under the premise of protecting the privacy of local sensitive data and the data released after dimensionality reduction,this paper proposed a horizontal federated PCA differential privacy data publishing algorithm.It introduced a random seed joint negotiation scheme to generate the same noise matrix between sites with less communication cost.It proposed a local noise averaging scheme,and added the averaging noise to the local covariance matrix.On the one hand,it protected local data privacy.On the other hand,it reduced the amount of noise added and achieved the same noise level as the centralized differential privacy PCA algorithm.Compared with similar algorithms,the amount of noise added was reduced.The experiment evaluates the algorithm from the perspective of privacy and utility,and proves that the algorithm has higher utility compared with similar algorithms.
关 键 词:横向联邦PCA 差分隐私 本地扰动 数据发布 可用性
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112