A Hybrid Path Planning Method Based on Articulated Vehicle Model  被引量:1

在线阅读下载全文

作  者:Zhongping Chen Dong Wang Gang Chen Yanxi Ren Danjie Du 

机构地区:[1]School of Instrument Science and Engineering,Southeast University,Nanjing,210096,China [2]School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210096,China [3]32184 PLA Troops,Beijing,100093,China [4]North Carolina State University,Raleigh,NC,USA

出  处:《Computers, Materials & Continua》2020年第11期1781-1793,共13页计算机、材料和连续体(英文)

基  金:This work was supported by the Jiangsu Natural Science Foundation Project BK20170681;National Natural Science Foundation of China 51675281.

摘  要:Due to the unique steering mechanism and driving characteristics of the articulated vehicle,a hybrid path planning method based on the articulated vehicle model is proposed to meet the demand of obstacle avoidance and searching the path back and forth of the articulated vehicle.First,Support Vector Machine(SVM)theory is used to obtain the two-dimensional optimal zero potential curve and the maximum margin,and then,several key points are selected from the optimal zero potential curves by using Longest Accessible Path(LAP)method.Next,the Cubic Bezier(CB)curve is adopted to connect the curve that satisfies the curvature constraint of the articulated vehicle between every two key points.Finally,Back and Forth Rapidly-exploring Random Tree with Course Correction(BFRRT-CC)is designed to connect paths that do not meet articulated vehicle curvature requirements.Simulation results show that the proposed hybrid path planning method can search a feasible path with a 90-degree turn,which meets the demand for obstacle avoidance and articulated vehicle back-and-forth movement.

关 键 词:Path planning articulated vehicle back and forth rapidly-exploring random tree support vector machine cubic Bezier curve 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象