An Efficient Mechanism for Product Data Extraction from E-Commerce Websites  

在线阅读下载全文

作  者:Malik Javed Akhtar Zahur Ahmad Rashid Amin Sultan H.Almotiri Mohammed A.Al Ghamdi Hamza Aldabbas 

机构地区:[1]University of Engineering and Technology,Taxila,Pakistan [2]Computer Science Department,Umm Al-Qura University,Makkah City,Saudi Arabia [3]Al-Balqa Applied University,Al-Salt,Jordan

出  处:《Computers, Materials & Continua》2020年第12期2639-2663,共25页计算机、材料和连续体(英文)

摘  要:A large amount of data is present on the web which can be used for useful purposes like a product recommendation,price comparison and demand forecasting for a particular product.Websites are designed for human understanding and not for machines.Therefore,to make data machine-readable,it requires techniques to grab data from web pages.Researchers have addressed the problem using two approaches,i.e.,knowledge engineering and machine learning.State of the art knowledge engineering approaches use the structure of documents,visual cues,clustering of attributes of data records and text processing techniques to identify data records on a web page.Machine learning approaches use annotated pages to learn rules.These rules are used to extract data from unseen web pages.The structure of web documents is continuously evolving.Therefore,new techniques are needed to handle the emerging requirements of web data extraction.In this paper,we have presented a novel,simple and efficient technique to extract data from web pages using visual styles and structure of documents.The proposed technique detects Rich Data Region(RDR)using query and correlative words of the query.RDR is then divided into data records using style similarity.Noisy elements are removed using a Common Tag Sequence(CTS)and formatting entropy.The system is implemented using JAVA and runs on the dataset of real-world working websites.The effectiveness of results is evaluated using precision,recall,and F-measure and compared with five existing systems.A comparison of the proposed technique to existing systems has shown encouraging results.

关 键 词:Document object model rich data region common tag sequence web data extraction deep web mining 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象