检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:伊慧娟 高云鹏[1,2] 朱彦卿 黄瑞[1,2,3] 黄纯 YI Huijuan;GAO Yunpeng;ZHU Yanqing;HUANG Rui;HUANG Chun(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;Hunan Province Key Laboratory of Intelligent Electrical Measurement and Application Technology,Changsha 410004,China;State Grid Hunan Electric Power Company Limited,Changsha 410004,China)
机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082 [2]智能电气量测与应用技术湖南省重点实验室,湖南长沙410004 [3]国网湖南省电力有限公司,湖南长沙410004
出 处:《电力自动化设备》2022年第1期199-205,共7页Electric Power Automation Equipment
基 金:国家自然科学基金资助项目(51777061);长沙市重点研发计划项目(kq1901029);国家重点实验室开放基金研究项目(BGRIMM-KZSKL-2020-09)。
摘 要:针对电能质量复合扰动识别中特征提取效率低、分类器识别能力与学习速度无法同步提高的问题,提出一种基于自适应窗不完全S变换与留一交叉验证优化的核极限学习机(LOO-KELM)算法的复合电能质量扰动识别方法。首先根据选定的主频率点自适应调节S变换窗宽系数,提取具有高时频分辨率的59种电能质量(PQ)特征,再通过留一交叉验证寻找最小预测残差平方和,实现核极限学习机的输出权重优化,最后根据提取PQ特征集与优化后的核极限学习机实现复合扰动的识别与分类。仿真和实测结果表明,所提方法对不同噪声下的16类混合电能质量扰动均具有较高的分类精度,相较于现有复合电能质量识别方法,分类精度更高且训练时间更短。In order to solve the problems of low efficiency of feature extraction,and inability of classifier recognition and learning speed in composite power quality disturbance classification,a composite power quality disturbance recognition method based on incomplete S transformation of adaptive window and LOO-KELM(Kernel Extreme Learning Machine optimized by Leave-One-Out cross validation)algorithm is proposed.Firstly,the window width coefficient of S transform is adaptively adjusted according to the selected main frequency,59 kinds of PQ(Power Quality)characteristics with high time-frequency resolution are extracted.Then through LOO,the minimum prediction residual sum of squares is obtained for the kernel extreme learning machine output weight optimization.According to the extraction of PQ feature set and the optimized kernel extreme learning machine,the identification and classification of compound disturbance are realized.Results of simulation and measurement show that the proposed method has higher classification accuracy for 16 types of mixed power quality disturbances under different noises.Compared with the existing composite power quality identification methods,the proposed method has higher classification accuracy and shorter training time.
关 键 词:电能质量 复合扰动识别 自适应窗不完全S变换 核极限学习机 留一交叉验证
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.110.4