检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Amit Chhabra Gurvinder Singh Karanjeet Singh Kahlon
机构地区:[1]Department of Computer Engineering&Technology,Guru Nanak Dev University,Amritsar,143005,India [2]Department of Computer Science,Guru Nanak Dev University,Amritsar,143005,India
出 处:《Computers, Materials & Continua》2020年第8期813-834,共22页计算机、材料和连续体(英文)
摘 要:Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.
关 键 词:HPC-as-a-Service task scheduling QUALITY-OF-SERVICE meta-heuristics and energy-efficiency
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.190.40